| 研究生: |
楊佳蓉 Yang, Jia-Rong |
|---|---|
| 論文名稱: |
平板式熱管熱傳特性之研究 Heat transfer characteristics of Flat Heat Pipe |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 平板熱管 、實驗 、數值模擬 、因次分析 |
| 外文關鍵詞: | Flat heat pipe (FHP), pressure drop, dimensional analysis |
| 相關次數: | 點閱:75 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分析平板式熱管(FHP)熱傳特性,以實驗、模擬及因次分析作一整合性的探討。實驗部份以不同瓦數加熱下,觀察FHP的溫度變化,以及計算出其相對熱阻值,以便進行不同瓦數下FHP的性能比較。模擬的部份則是先以模擬溫度和實驗進行比較,再探討最大輸入功率下的內部速度與壓力場現象,最後以因次分析比較本文與文獻之壓降及熱傳現象,再進行FHP之最佳工作點預測。
實驗結果顯示本文所使用之FHP熱阻範圍落在1.96~0.3℃/W,即FHP效能達穩定時熱阻幾乎維持0.3℃/W不變。以模擬結果看來,其在40W就已達到熱阻為0.3℃/W的狀態,較實驗為45W來的快,模擬和實驗的差異約在3%~16%。FHP在輸入瓦數55W的情況下,內部蒸氣最大速度為0.025m/s,蒸氣壓降約325pa;液體最大速度為0.0025m/s,液體壓降約為83pa。本文以 及 函數比較文獻與本文蒸氣壓降與熱傳結果,顯示文獻之FHP應尚未發揮其效能,兩函數持平後之座標為 ,估計此點為本研究之FHP最佳工作點。
To analyze the heat transfer characteristics of a flat heat pipe (FHP) is the purpose of this study.
First, in order to compare the performance of the FHP at different input watts, we observe the trends of temperature distributions of the FHP, and calculate the corresponding thermal resistance. For the simulation, we make a comparison with experiment results about the temperature field, and then discuss the physical phenomena about the velocity and pressure field at the maximum performance condition. Finally, we compare the dimensional analysis results between this study and others, and indicate the best working point of the FHP.
The experimental results show that the range of the FHP thermal resistance is between 1.96~0.3℃/W, and the thermal resistance is almost constant 0.3℃/W after 45W. The difference between simulations and experiments is around 3%~16%.
About the velocity and pressure fields inside the FHP: the maximum velocity of vapor is 0.025m/s, pressure drop of vapor is 325pa; the maximum velocity of liquid is 0.0025m/s, pressure drop of liquid is 83pa. Using the function and to compare this study and others, we can find the FHP of the reference is at the starting point. The two function, F and G, will level off at , the point is also forecasted as the best working point.
[1] http://ark.intel.com/Product.aspx?id=37147&wapkw=(i7+9)
[2] C. L. Tien and A. R. Rohani, “Analysis of the effects of vapor pressure drop on heat pipe performance,” Vol. 17, pp. 61-67, 1974
[3] P. C. Stephan and C. A. Busse, “Analysis of heat transfer coefficient of grooved heat pipe evaporator walls,” International Journal of Heat Mass Transfer, Vol. 35, No. 2, pp.383-391, 1992
[4] 蔡宗翰,不同形狀對熱管蒸氣流場之影響,國立成功大學航空太空工程學系碩士論文,2002
[5] 黃宣叡,熱管內三維流場之數值模擬研究,國立成功大學航空太空工程學系碩士論文,2003
[6] 黃柏超,多孔性介質對三維熱管熱傳效能之數值模擬研究分析,國立成功大學航空太空工程學系碩士論文,2005
[7] Xiaowu Wang, Yong Tang, and Ping Chen, “Investigation into performance of a heat pipe with micro grooves fabricated by extrusion-ploughing process,” Energy Conversion and Management, Vol. 50, Issue 5, pp. 1384-1388, May 2009
[8] G. V. Kuznetsov and A. E. Sitnikov, “Numerical analysis of basic regularities of heat and mass transfer in a high-temperature heat pipe,” High Temperature, Vol. 40, No.6, 2002, pp. 898-904. Translated from Teplofizika Vysokikh Temperatur, Vol. 40, No. 6, pp. 964-970, 2002
[9] S. Murer, P. Lybaert, L. Gleton and A. Sturbois, “Experimental and numerical analysis of the transient response of a miniature heat pipe,” Applied Thermal Engineering, Vol. 25, Issue 16, pp. 2566-2577, 2005
[10] Peng-fei Bai, Yong Tang, Biao Tang, and Long-sheng Lu, “Thermal performance of heat pipe with different micro-groove structures,” Journal of Central South University of Technology, Volume 15, pp. 240-244, 2008
[11] C.Fustinoni and M. Marengo, “Integration of a lumped parameters code with a finite volume code : numerical analysis of a heat pipe,” XXVII UIT Congress, 2009
[12] H. B. Ma and G. P. Peterson, ”Experimental investigation of the maximum heat transport in triangular grooves,” Journal of Heat Transfer, Vol. 118, pp. 740–746, 1996
[13] 郭銘祥,平板式熱管之性能預測與設計,長庚大學機械工程研究所碩士論文,2000
[14] 管政綱,平板式熱管熱傳之實驗研究,國立清華大學動力機械研究所碩士論文,2004
[15] 陳文棟,平板式微流道熱管散熱效能之研究,國立中央大學光電科學研究所碩士論文,2006
[16] 陳瑤明,高功率平板式熱管之研究,國科會計畫編號NSC 88-2212-E-002-026,1998-1999
[17] Jeong-Se Suh and Young Sik Park, “Analysis of thermal performance in a micro flat heat pipe with axially trapezoidal groove,” Tamkang Journal of Science and Engineering, Vol.6, No. 4, pp. 201-206, 2003
[18] R. Boukhanouf, A. Haddad, M.T. North and C. Buffone, “Experimental investigation of a flat heat pipe performance using IR thermal imaging camera,” Applied Thermal Engineering, Vol.26, pp.2148–2156, 2006
[19] 劉展宏,運作中平板熱管在不同燒結毛細結構與工作流體下之蒸發區可視化觀察與量測,國立清華大學動力機械研究所碩士論文,2009
[20] Koichiro Take and Ralph L. Webb, “Thermal performance of integrated plate heat pipe with a heat spreader,” Journal of Electronic Packaging, Vol. 123, pp. 189-195, 2001
[21] G. , C. B. Sobhan, G. P. Peterson, D. T. Queheillalt and H. N. G. Wadley, “Thermal response of a flat heat pipe sandwich structure to a localized heat flux,” International journal of heat and mass transfer, Vol. 49, pp. 4070-4081, 2006
[22] G. Carbajal, C.B. Sobhan, G.P. ‘‘Bud” Peterson, D.T. Queheillalt and Haydn N.G. Wadley, “A quasi-3D analysis of the thermal performance of a flat heat pipe,” International Journal of Heat and Mass Transfer, Vol. 50, No.21-22, pp. 4286-4296, 2007
[23] C. B. Sobhan, S. V. Garimella and V. V. Unnikrishnan, “A computational model for the transient analysis of flat heat pipes,” International Society Conference on Thermal Phenomena, 2000
[24] 依日光譯,熱管技術理論實務,日本技術協會編:復漢出版社,1986
[25] P. D. Dunn and D. A. Reay, “HEAT PIPES,” Pergamon press, Oxford, 1982
[26] 康尚文,蔡孟昌,「熱管及均熱板之最新發展及應用」,工業材料雜誌,第293期,pp. 111-118,2011
[27] Vedat S. Arpaci, “Conduction Heat Transfer”, Addison-Wesley Pub. Co., 1966
[28] Christie J. Geankoplis, “Transport Process: Momentum, Heat, and Mass”, Allyn and Bacon, 1983