| 研究生: |
洪嘉鴻 Hong, Jia-Hong |
|---|---|
| 論文名稱: |
鈮酸鋰雙環並聯環形共振腔之設計與研製 Design and Characterizations of Lithium Niobate Based Dual Parallel Microrings Resonator |
| 指導教授: |
莊文魁
Chuang, Wen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 鈮酸鋰 、光波導 、質子交換 、環形共振腔 |
| 外文關鍵詞: | LiNbO3, Optical waveguide, Proton exchanged, Ring resonator |
| 相關次數: | 點閱:57 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文將探討環形共振器的設計和製作,由於它的波長選擇性,使得在積體光電子學上有廣泛的應用。在本文中,特別之處在於利用硬脂酸作為交換源,藉此在鈮酸鋰基板上使用質子交換法,製作一個半徑為數百微米的雙環並聯環形共振腔。之後使用光束分析儀去觀察分析共振腔的光分布模態,以及利用紅外光感測器連結至光學電表去量測評估其傳輸功率大小,接著通過錐形透鏡光纖將光源耦合進輸入波導之中,使用波段為C+L頻帶的放大自發放射 (Amplified Spontaneous emission) 光源,在共振條件下,對光源進行選擇性的篩選,並在輸出端處量測到所對應的傳輸頻譜。最後發現雙環並聯環形共振腔的特性結果與預期結果有些差異,並分析探討後續的失敗原因。
This thesis focuses on investigating the design and fabrication of microring resonators (MRR). Because of their unique sensitivity in wavelength, they have found a wide applicability in integrated optoelectronics. Specifically, parallel dual microring resonators with radii of hundreds of microns are fabricated in lithium niobate (LiNbO3) substrate using stearic acid as a proton exchange source. These resonators are first analyzed by observing their mode profiles using a beam profiler and transmission power amplitudes are evaluated using the infrared photodetectors coupled with an optical multimeter. Then, the aforementioned devices are then spectrally characterized by focusing C+L-band ASE light source into the bus waveguide via a tapered lensed fiber and under a selective resonance condition, the corresponding transmission spectrum can be duly extracted from the through port. Finally, a subsequent failure analysis is also performed in order to speculate why the performance of dual MRRs deviated from the initial expectation.
[1]S. E. Miller, "Integrated optics: An introduction," Bell System Technical Journal, vol. 48, pp. 2059-2069, 1969.
[2]G. H. Olsen, "InGaAsP laser diodes," Optical Engineering, vol. 20, p. 203440, 1981.
[3]T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, "Ultimate low-loss single-mode fibre at 1.55 μm," Electronics Letters, vol. 15, pp. 106-108, 1979.
[4]R. Mears, L. Reekie, S. Poole, and D. Payne, "Neodymium-doped silica single-mode fibre lasers," Electronics letters, vol. 21, pp. 738-740, 1985.
[5]S. Poole, D. N. Payne, and M. E. Fermann, "Fabrication of low-loss optical fibres containing rare-earth ions," Electronics Letters, vol. 21, pp. 737-738, 1985.
[6]R. A. Soref, "Silicon-based optoelectronics," Proceedings of the IEEE, vol. 81, pp. 1687-1706, 1993.
[7]K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in Proceedings of the Institution of Electrical Engineers, 1966, pp. 1151-1158.
[8]D. G. Rabus, "Ring resonators: Theory and modeling," Integrated Ring Resonators: The Compendium, pp. 3-40, 2007.
[9]B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," Journal of lightwave technology, vol. 15, pp. 998-1005, 1997.
[10]Y. Vlasov, W. M. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," nature photonics, vol. 2, p. 242, 2008.
[11]F. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O'Faolain, et al., "High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode," Optics express, vol. 17, pp. 21986-21991, 2009.
[12]J. L. Jackel, C. Rice, and J. Veselka, "Proton exchange for high‐index waveguides in LiNbO3," Applied Physics Letters, vol. 41, pp. 607-608, 1982.
[13]K. Yamamoto and T. Taniuchi, "Characteristics of pyrophosphoric acid proton‐exchanged waveguides in LiNbO3," Journal of applied physics, vol. 70, pp. 6663-6668, 1991.
[14]J. L. Jackel, C. Rice, and J. Veselka, "Composition control in proton-exchanged LiNbO3," Electronics Letters, vol. 19, pp. 387-388, 1983.
[15]E. Y. Pun, K. K. Loi, and P. S. Chung, "Proton-exchanged optical waveguides in Z-cut LiNbO/sub 3/using phosphoric acid," Journal of lightwave technology, vol. 11, pp. 277-284, 1993.
[16]E. Pun, T. Kong, P. Chung, and H. Chan, "Index profile of proton-exchanged waveguides in LiNbO3/sub 3/using pyrophosphoric acid," Electronics Letters, vol. 26, pp. 81-82, 1990.
[17]E. Pun, S. Zhao, K. Loi, and P. Chung, "Proton-exchanged LiNbO/sub 3/optical waveguides using stearic acid," IEEE photonics technology letters, vol. 3, pp. 1006-1008, 1991.
[18]A. Yi‐Yan, "Index instabilities in proton‐exchanged LiNbO3 waveguides," Applied Physics Letters, vol. 42, pp. 633-635, 1983.
[19]Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, "LiNbO3 optical waveguide fabrication by high-temperature proton exchange," Journal of lightwave technology, vol. 18, p. 562, 2000.
[20]Y. N. Korkishko and V. Fedorov, "Structural phase diagram of Hx/Li1-xNbO3 waveguides: The correlation between optical and structural properties," IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 187-196, 1996.
[21]Y. N. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, "Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate," Applied optics, vol. 35, pp. 7056-7060, 1996.
[22]R. Schmidt and I. Kaminow, "Metal‐diffused optical waveguides in LiNbO3," Applied Physics Letters, vol. 25, pp. 458-460, 1974.
[23]T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, "Water vapor effects on optical characteristics in Ti: LiNbO3 channel waveguides," Applied optics, vol. 30, pp. 1085-1089, 1991.
[24]J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakata, "Electro‐optic amplitude modulation using three‐dimensional LiNbO3 waveguide fabricated by TiO2 diffusion," Applied Physics Letters, vol. 27, pp. 19-21, 1975.
[25]T. Ranganath and S. Wang, "Suppression of Li2O out‐diffusion from Ti‐diffused LiNbO3 optical waveguides," Applied Physics Letters, vol. 30, pp. 376-379, 1977.
[26]S. Miyazawa, R. Guglielmi, and A. Carenco, "A simple technique for suppressing Li2O out‐diffusion in Ti: LiNbO3 optical waveguide," Applied Physics Letters, vol. 31, pp. 742-744, 1977.
[27]J. Jackel, V. Ramaswamy, and S. Lyman, "Elimination of out‐diffused surface guiding in titanium‐diffused LiNbO3," Applied Physics Letters, vol. 38, pp. 509-511, 1981.
[28]R. Esdaile, "Closed‐tube control of out‐diffusion during fabrication of optical waveguides in LiNbO3," Applied Physics Letters, vol. 33, pp. 733-734, 1978.
[29]Y.-P. Liao, R.-C. Lu, C.-H. Yang, and W.-S. Wang, "Passive Ni: LiNbO/sub 3/polarisation splitter at 1.3/spl mu/m wavelength," Electronics Letters, vol. 32, pp. 1003-1005, 1996.
[30]Y.-P. Liao, D.-J. Chen, R.-C. Lu, and W.-S. Wang, "Nickel-diffused lithium niobate optical waveguide with process-dependent polarization," IEEE Photonics Technology Letters, vol. 8, pp. 548-550, 1996.
[31]J. Jackel and J. Johnson, "Reverse exchange method for burying proton exchanged waveguides," Electronics Letters, vol. 27, pp. 1360-1361, 1991.
[32]Y. N. Korkishko, V. Fedorov, T. Morozova, F. Caccavale, F. Gonella, and F. Segato, "Reverse proton exchange for buried waveguides in LiNbO 3," JOSA A, vol. 15, pp. 1838-1842, 1998.
[33]M. Fujimura, T. Murayama, and T. Suhara, "Quasi-phase-matched difference frequency generation devices with annealed/proton-exchanged LiNbO3 waveguides buried by reverse proton exchange," Japanese journal of applied physics, vol. 43, p. L1543, 2004.
[34]F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate-a novel processing technique," Journal of lightwave technology, vol. 10, pp. 1606-1609, 1992.
[35]H. Hu, R. Ricken, W. Sohler, and R. Wehrspohn, "Lithium niobate ridge waveguides fabricated by wet etching," IEEE Photonics Technology Letters, vol. 19, pp. 417-419, 2007.
[36]C.-C. Lai, C.-Y. Chang, Y.-Y. Wei, and W.-S. Wang, "Gamma-ray irradiation-enhanced wet-etching of proton-exchanged lithium niobate," IEEE Photonics Technology Letters, vol. 20, pp. 682-684, 2008.
[37]D. Smith, H. Riccius, and R. Edwin, "Refractive indices of lithium niobate," Optics Communications, vol. 17, pp. 332-335, 1976.
[38]D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate," JOSA B, vol. 14, pp. 3319-3322, 1997.
[39]R. Weis and T. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Applied Physics A, vol. 37, pp. 191-203, 1985.
[40]http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3-Wafers.html
[41]A. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, vol. 14, pp. 483-485, 2002.
[42]A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE Journal of Quantum Electronics, vol. 9, pp. 919-933, 1973.
[43]Jia Hung Ou, "Investigative Analyses of GaN-based Multimode Interference (MMI) Couplers and Ring Resonators," NCKU master thesis, 2015.
[44]A. Mahapatra and W. Robinson, "Integrated-optic ring resonators made by proton exchange in lithium niobate," Applied optics, vol. 24, pp. 2285-2286, 1985.
[45]P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, et al., "Thermally tunable silicon racetrack resonators with ultralow tuning power," Optics express, vol. 18, pp. 20298-20304, 2010.
[46]Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," nature, vol. 435, p. 325, 2005.
[47]A. Melloni, "Synthesis of a parallel-coupled ring-resonator filter," Optics letters, vol. 26, pp. 917-919, 2001.
[48]R. Grover, V. Van, T. Ibrahim, P. Absil, L. Calhoun, F. Johnson, et al., "Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters," Journal of Lightwave Technology, vol. 20, p.872, 2002.
[49]O. Schwelb and I. Frigyes, "A design for a high finesse parallel‐coupled microring resonator filter," Microwave and Optical Technology Letters, vol. 38, pp. 125-129, 2003.
[50]F. S. Tan, H. Kelderman, and A. Driessen, "Bandpass filter based on parallel cascaded multiple microring resonators," in AIP Conference Proceedings, 2004, pp. 417-418.
[51]G. Griffel, "Synthesis of optical filters using ring resonator arrays," IEEE Photonics Technology Letters, vol. 12, pp. 810-812, 2000.
[52]C.-s. Ma, Y.-z. Xu, X. Yan, Z.-k. Qin, and X.-y. Wang, "Effect of ring spacing on spectral response of parallel-cascaded microring resonator arrays," Optical and quantum electronics, vol. 37, pp. 561-574, 2005.
[53]R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Applied Optics, vol. 12, pp. 2901-2908, 1973.
[54]P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, et al., "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, pp. 1328-1330, 2004.
[55]A. Majkić, M. Koechlin, G. Poberaj, and P. Günter, "Optical microring resonators in fluorine-implanted lithium niobate," Optics Express, vol. 16, pp. 8769-8779, 2008
[56]M. Azadi and G. G. Lopez, "Spin Curves for MicroChem S1800 (1805, 1813, 1818) Series Positive Resist," 2016.
[57]M. K. Smit, E. C. Pennings, and H. Blok, "A normalized approach to the design of low-loss optical waveguide bends," Journal of lightwave technology, vol. 11, pp. 1737-1742, 1993.
[58]J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, et al., "High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation," Optics express, vol. 23, pp. 23072-23078, 2015.
[59]J. Veselka and G. Bogert, "Low-loss proton exchange channel waveguides and TM-pass polarizers in Z-cut LiNbO3," in Optical Fiber Communication Conference, 1987, p. TUH3.
[60]R. G. Hunsperger, "Coupling Between Waveguides," in Integrated Optics, ed: Springer, 2009, pp. 153-169.
[61]T.-J. Wang, C.-H. Chu, and C.-Y. Lin, "Electro-optically tunable microring resonators on lithium niobate," Optics letters, vol. 32, pp. 2777-2779, 2007.
[62]T.-J. Wang, C.-F. Huang, W.-S. Wang, and P.-K. Wei, "A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3," Journal of lightwave technology, vol. 22, p. 1764, 2004.
[63]T.-J. Wang and C.-H. Chu, "Wavelength-tunable microring resonator on lithium niobate," IEEE Photonics Technology Letters, vol. 19, pp. 1904-1906, 2007.
[64]S. Saha, S. S. Yohanes, D. Jun, A. Danner, and M. Tsang, "Fabrication and characterization of optical devices on lithium niobate on insulator chips," Procedia Engineering, vol. 140, pp. 183-186, 2016.
[65]M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, "Free-standing lithium niobate microring resonators for hybrid integrated optics," IEEE Photonics Technology Letters, vol. 22, pp. 251-253, 2010.
[66]M. E. Solmaz, D. B. Adams, W. C. Tan, W. T. Snider, and C. K. Madsen, "Vertically integrated As2S3 ring resonator on LiNbO3," Optics letters, vol. 34, pp. 1735-1737, 2009.
[67]C. C. Evans, C. Liu, and J. Suntivich, "Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process," Optics express, vol. 23, pp. 11160-11169, 2015.
[68]C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, "High performance SOI microring resonator for biochemical sensing," Optics & laser technology, vol. 59, pp. 60-67, 2014.
[69]G. Mi, C. Horvath, M. Aktary, and V. Van, "Silicon microring refractometric sensor for atmospheric CO2 gas monitoring," Optics express, vol. 24, pp. 1773-1780, 2016.
[70]D. Fu, J. Chung, Q. Liu, R. Raziq, J. S. Kee, M. K. Park, et al., "Polymer coated silicon microring device for the detection of sub-ppm volatile organic compounds," Sensors and Actuators B: Chemical, vol. 257, pp. 136-142, 2018.