簡易檢索 / 詳目顯示

研究生: 洪嘉鴻
Hong, Jia-Hong
論文名稱: 鈮酸鋰雙環並聯環形共振腔之設計與研製
Design and Characterizations of Lithium Niobate Based Dual Parallel Microrings Resonator
指導教授: 莊文魁
Chuang, Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 鈮酸鋰光波導質子交換環形共振腔
外文關鍵詞: LiNbO3, Optical waveguide, Proton exchanged, Ring resonator
相關次數: 點閱:57下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將探討環形共振器的設計和製作,由於它的波長選擇性,使得在積體光電子學上有廣泛的應用。在本文中,特別之處在於利用硬脂酸作為交換源,藉此在鈮酸鋰基板上使用質子交換法,製作一個半徑為數百微米的雙環並聯環形共振腔。之後使用光束分析儀去觀察分析共振腔的光分布模態,以及利用紅外光感測器連結至光學電表去量測評估其傳輸功率大小,接著通過錐形透鏡光纖將光源耦合進輸入波導之中,使用波段為C+L頻帶的放大自發放射 (Amplified Spontaneous emission) 光源,在共振條件下,對光源進行選擇性的篩選,並在輸出端處量測到所對應的傳輸頻譜。最後發現雙環並聯環形共振腔的特性結果與預期結果有些差異,並分析探討後續的失敗原因。

    This thesis focuses on investigating the design and fabrication of microring resonators (MRR). Because of their unique sensitivity in wavelength, they have found a wide applicability in integrated optoelectronics. Specifically, parallel dual microring resonators with radii of hundreds of microns are fabricated in lithium niobate (LiNbO3) substrate using stearic acid as a proton exchange source. These resonators are first analyzed by observing their mode profiles using a beam profiler and transmission power amplitudes are evaluated using the infrared photodetectors coupled with an optical multimeter. Then, the aforementioned devices are then spectrally characterized by focusing C+L-band ASE light source into the bus waveguide via a tapered lensed fiber and under a selective resonance condition, the corresponding transmission spectrum can be duly extracted from the through port. Finally, a subsequent failure analysis is also performed in order to speculate why the performance of dual MRRs deviated from the initial expectation.

    中文摘要 I 英文摘要 II 誌謝 IX 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 序論 1 1.1 光通訊簡介 1 1.2 環形共振器概要 4 1.2.1 質子交換法 6 1.2.2 熱退火式質子交換法 11 1.2.3 金屬擴散式波導 14 1.2.4 反質子交換法 16 1.2.5 質子交換濕式蝕刻法 18 1.3 鈮酸鋰基本特性 19 1.4 論文架構 22 第二章 環形共振腔設計 23 2.1 環形共振腔原理 23 2.2 雙環共振腔介紹 28 2.3 自由光譜區域 31 2.4 品質因子 32 第三章 共振腔製作設計與實驗 33 3.1 元件製程導論 33 3.2 元件結構介紹 36 3.3 元件製作流程 38 3.3.1 基板切割與清洗 41 3.3.2 金屬薄膜 43 3.3.3 黃光顯影 44 3.3.4 質子交換光波導 47 3.3.5 研磨拋光 48 第四章 量測與結果 50 4.1 元件量測與系統架構 50 4.2 量測結果與分析 53 第五章結論與未來工作 60 5.1 結論 60 5.2 未來工作 61 參考文獻 70

    [1]S. E. Miller, "Integrated optics: An introduction," Bell System Technical Journal, vol. 48, pp. 2059-2069, 1969.
    [2]G. H. Olsen, "InGaAsP laser diodes," Optical Engineering, vol. 20, p. 203440, 1981.
    [3]T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, "Ultimate low-loss single-mode fibre at 1.55 μm," Electronics Letters, vol. 15, pp. 106-108, 1979.
    [4]R. Mears, L. Reekie, S. Poole, and D. Payne, "Neodymium-doped silica single-mode fibre lasers," Electronics letters, vol. 21, pp. 738-740, 1985.
    [5]S. Poole, D. N. Payne, and M. E. Fermann, "Fabrication of low-loss optical fibres containing rare-earth ions," Electronics Letters, vol. 21, pp. 737-738, 1985.
    [6]R. A. Soref, "Silicon-based optoelectronics," Proceedings of the IEEE, vol. 81, pp. 1687-1706, 1993.
    [7]K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in Proceedings of the Institution of Electrical Engineers, 1966, pp. 1151-1158.
    [8]D. G. Rabus, "Ring resonators: Theory and modeling," Integrated Ring Resonators: The Compendium, pp. 3-40, 2007.
    [9]B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," Journal of lightwave technology, vol. 15, pp. 998-1005, 1997.
    [10]Y. Vlasov, W. M. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," nature photonics, vol. 2, p. 242, 2008.
    [11]F. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O'Faolain, et al., "High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode," Optics express, vol. 17, pp. 21986-21991, 2009.
    [12]J. L. Jackel, C. Rice, and J. Veselka, "Proton exchange for high‐index waveguides in LiNbO3," Applied Physics Letters, vol. 41, pp. 607-608, 1982.
    [13]K. Yamamoto and T. Taniuchi, "Characteristics of pyrophosphoric acid proton‐exchanged waveguides in LiNbO3," Journal of applied physics, vol. 70, pp. 6663-6668, 1991.
    [14]J. L. Jackel, C. Rice, and J. Veselka, "Composition control in proton-exchanged LiNbO3," Electronics Letters, vol. 19, pp. 387-388, 1983.
    [15]E. Y. Pun, K. K. Loi, and P. S. Chung, "Proton-exchanged optical waveguides in Z-cut LiNbO/sub 3/using phosphoric acid," Journal of lightwave technology, vol. 11, pp. 277-284, 1993.
    [16]E. Pun, T. Kong, P. Chung, and H. Chan, "Index profile of proton-exchanged waveguides in LiNbO3/sub 3/using pyrophosphoric acid," Electronics Letters, vol. 26, pp. 81-82, 1990.
    [17]E. Pun, S. Zhao, K. Loi, and P. Chung, "Proton-exchanged LiNbO/sub 3/optical waveguides using stearic acid," IEEE photonics technology letters, vol. 3, pp. 1006-1008, 1991.
    [18]A. Yi‐Yan, "Index instabilities in proton‐exchanged LiNbO3 waveguides," Applied Physics Letters, vol. 42, pp. 633-635, 1983.
    [19]Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, "LiNbO3 optical waveguide fabrication by high-temperature proton exchange," Journal of lightwave technology, vol. 18, p. 562, 2000.
    [20]Y. N. Korkishko and V. Fedorov, "Structural phase diagram of Hx/Li1-xNbO3 waveguides: The correlation between optical and structural properties," IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 187-196, 1996.
    [21]Y. N. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, "Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate," Applied optics, vol. 35, pp. 7056-7060, 1996.
    [22]R. Schmidt and I. Kaminow, "Metal‐diffused optical waveguides in LiNbO3," Applied Physics Letters, vol. 25, pp. 458-460, 1974.
    [23]T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, "Water vapor effects on optical characteristics in Ti: LiNbO3 channel waveguides," Applied optics, vol. 30, pp. 1085-1089, 1991.
    [24]J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakata, "Electro‐optic amplitude modulation using three‐dimensional LiNbO3 waveguide fabricated by TiO2 diffusion," Applied Physics Letters, vol. 27, pp. 19-21, 1975.
    [25]T. Ranganath and S. Wang, "Suppression of Li2O out‐diffusion from Ti‐diffused LiNbO3 optical waveguides," Applied Physics Letters, vol. 30, pp. 376-379, 1977.
    [26]S. Miyazawa, R. Guglielmi, and A. Carenco, "A simple technique for suppressing Li2O out‐diffusion in Ti: LiNbO3 optical waveguide," Applied Physics Letters, vol. 31, pp. 742-744, 1977.
    [27]J. Jackel, V. Ramaswamy, and S. Lyman, "Elimination of out‐diffused surface guiding in titanium‐diffused LiNbO3," Applied Physics Letters, vol. 38, pp. 509-511, 1981.
    [28]R. Esdaile, "Closed‐tube control of out‐diffusion during fabrication of optical waveguides in LiNbO3," Applied Physics Letters, vol. 33, pp. 733-734, 1978.
    [29]Y.-P. Liao, R.-C. Lu, C.-H. Yang, and W.-S. Wang, "Passive Ni: LiNbO/sub 3/polarisation splitter at 1.3/spl mu/m wavelength," Electronics Letters, vol. 32, pp. 1003-1005, 1996.
    [30]Y.-P. Liao, D.-J. Chen, R.-C. Lu, and W.-S. Wang, "Nickel-diffused lithium niobate optical waveguide with process-dependent polarization," IEEE Photonics Technology Letters, vol. 8, pp. 548-550, 1996.
    [31]J. Jackel and J. Johnson, "Reverse exchange method for burying proton exchanged waveguides," Electronics Letters, vol. 27, pp. 1360-1361, 1991.
    [32]Y. N. Korkishko, V. Fedorov, T. Morozova, F. Caccavale, F. Gonella, and F. Segato, "Reverse proton exchange for buried waveguides in LiNbO 3," JOSA A, vol. 15, pp. 1838-1842, 1998.
    [33]M. Fujimura, T. Murayama, and T. Suhara, "Quasi-phase-matched difference frequency generation devices with annealed/proton-exchanged LiNbO3 waveguides buried by reverse proton exchange," Japanese journal of applied physics, vol. 43, p. L1543, 2004.
    [34]F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate-a novel processing technique," Journal of lightwave technology, vol. 10, pp. 1606-1609, 1992.
    [35]H. Hu, R. Ricken, W. Sohler, and R. Wehrspohn, "Lithium niobate ridge waveguides fabricated by wet etching," IEEE Photonics Technology Letters, vol. 19, pp. 417-419, 2007.
    [36]C.-C. Lai, C.-Y. Chang, Y.-Y. Wei, and W.-S. Wang, "Gamma-ray irradiation-enhanced wet-etching of proton-exchanged lithium niobate," IEEE Photonics Technology Letters, vol. 20, pp. 682-684, 2008.
    [37]D. Smith, H. Riccius, and R. Edwin, "Refractive indices of lithium niobate," Optics Communications, vol. 17, pp. 332-335, 1976.
    [38]D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate," JOSA B, vol. 14, pp. 3319-3322, 1997.
    [39]R. Weis and T. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Applied Physics A, vol. 37, pp. 191-203, 1985.
    [40]http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3-Wafers.html
    [41]A. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, vol. 14, pp. 483-485, 2002.
    [42]A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE Journal of Quantum Electronics, vol. 9, pp. 919-933, 1973.
    [43]Jia Hung Ou, "Investigative Analyses of GaN-based Multimode Interference (MMI) Couplers and Ring Resonators," NCKU master thesis, 2015.
    [44]A. Mahapatra and W. Robinson, "Integrated-optic ring resonators made by proton exchange in lithium niobate," Applied optics, vol. 24, pp. 2285-2286, 1985.
    [45]P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, et al., "Thermally tunable silicon racetrack resonators with ultralow tuning power," Optics express, vol. 18, pp. 20298-20304, 2010.
    [46]Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," nature, vol. 435, p. 325, 2005.
    [47]A. Melloni, "Synthesis of a parallel-coupled ring-resonator filter," Optics letters, vol. 26, pp. 917-919, 2001.
    [48]R. Grover, V. Van, T. Ibrahim, P. Absil, L. Calhoun, F. Johnson, et al., "Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters," Journal of Lightwave Technology, vol. 20, p.872, 2002.
    [49]O. Schwelb and I. Frigyes, "A design for a high finesse parallel‐coupled microring resonator filter," Microwave and Optical Technology Letters, vol. 38, pp. 125-129, 2003.
    [50]F. S. Tan, H. Kelderman, and A. Driessen, "Bandpass filter based on parallel cascaded multiple microring resonators," in AIP Conference Proceedings, 2004, pp. 417-418.
    [51]G. Griffel, "Synthesis of optical filters using ring resonator arrays," IEEE Photonics Technology Letters, vol. 12, pp. 810-812, 2000.
    [52]C.-s. Ma, Y.-z. Xu, X. Yan, Z.-k. Qin, and X.-y. Wang, "Effect of ring spacing on spectral response of parallel-cascaded microring resonator arrays," Optical and quantum electronics, vol. 37, pp. 561-574, 2005.
    [53]R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Applied Optics, vol. 12, pp. 2901-2908, 1973.
    [54]P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, et al., "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, pp. 1328-1330, 2004.
    [55]A. Majkić, M. Koechlin, G. Poberaj, and P. Günter, "Optical microring resonators in fluorine-implanted lithium niobate," Optics Express, vol. 16, pp. 8769-8779, 2008
    [56]M. Azadi and G. G. Lopez, "Spin Curves for MicroChem S1800 (1805, 1813, 1818) Series Positive Resist," 2016.
    [57]M. K. Smit, E. C. Pennings, and H. Blok, "A normalized approach to the design of low-loss optical waveguide bends," Journal of lightwave technology, vol. 11, pp. 1737-1742, 1993.
    [58]J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, et al., "High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation," Optics express, vol. 23, pp. 23072-23078, 2015.
    [59]J. Veselka and G. Bogert, "Low-loss proton exchange channel waveguides and TM-pass polarizers in Z-cut LiNbO3," in Optical Fiber Communication Conference, 1987, p. TUH3.
    [60]R. G. Hunsperger, "Coupling Between Waveguides," in Integrated Optics, ed: Springer, 2009, pp. 153-169.
    [61]T.-J. Wang, C.-H. Chu, and C.-Y. Lin, "Electro-optically tunable microring resonators on lithium niobate," Optics letters, vol. 32, pp. 2777-2779, 2007.
    [62]T.-J. Wang, C.-F. Huang, W.-S. Wang, and P.-K. Wei, "A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3," Journal of lightwave technology, vol. 22, p. 1764, 2004.
    [63]T.-J. Wang and C.-H. Chu, "Wavelength-tunable microring resonator on lithium niobate," IEEE Photonics Technology Letters, vol. 19, pp. 1904-1906, 2007.
    [64]S. Saha, S. S. Yohanes, D. Jun, A. Danner, and M. Tsang, "Fabrication and characterization of optical devices on lithium niobate on insulator chips," Procedia Engineering, vol. 140, pp. 183-186, 2016.
    [65]M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, "Free-standing lithium niobate microring resonators for hybrid integrated optics," IEEE Photonics Technology Letters, vol. 22, pp. 251-253, 2010.
    [66]M. E. Solmaz, D. B. Adams, W. C. Tan, W. T. Snider, and C. K. Madsen, "Vertically integrated As2S3 ring resonator on LiNbO3," Optics letters, vol. 34, pp. 1735-1737, 2009.
    [67]C. C. Evans, C. Liu, and J. Suntivich, "Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process," Optics express, vol. 23, pp. 11160-11169, 2015.
    [68]C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, "High performance SOI microring resonator for biochemical sensing," Optics & laser technology, vol. 59, pp. 60-67, 2014.
    [69]G. Mi, C. Horvath, M. Aktary, and V. Van, "Silicon microring refractometric sensor for atmospheric CO2 gas monitoring," Optics express, vol. 24, pp. 1773-1780, 2016.
    [70]D. Fu, J. Chung, Q. Liu, R. Raziq, J. S. Kee, M. K. Park, et al., "Polymer coated silicon microring device for the detection of sub-ppm volatile organic compounds," Sensors and Actuators B: Chemical, vol. 257, pp. 136-142, 2018.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE