簡易檢索 / 詳目顯示

研究生: 蘇彥豪
Su, Yen-Hao
論文名稱: 汽車引擎用噴覆成型高矽鋁合金汽缸套之開發
Development of Spray-Formed Al-Si Cylinder Liner for Auto Engine
指導教授: 曹紀元
Tsao, Chi-Yuan Albert
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 193
中文關鍵詞: 擠型磨耗試驗合金發展高效能引擎引擎汽缸套高矽鋁合金噴覆成型
外文關鍵詞: Extrusion, High-Silicon-Content Aluminum Alloy, High Performance Engine, Alloy Development, Spray Forming, Wear Test, Cylinder Liner
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   引擎為汽車之動力來源,引擎性能除了取決於各操作參數以及結構設計之匹配外,各部件所用之材質亦有決定性之影響。傳統汽車引擎均採用鑄鐵汽缸套,不論重量、引擎效率及引擎性能上均不及採用高矽鋁合金(~25 wt% Si)汽缸套之引擎,高矽鋁合金汽缸套已成為時下汽車工業最新趨勢。儘管高矽鋁合金極具市場潛力,但要實際將之推展至汽車工業取代鑄鐵汽缸套時,則仍有許多問題待克服。本研究基於上述產業之需求,利用噴覆成型製程製造高矽鋁合金圓錠,並配合後段製程如擠型、車削及表面處理等,以開發汽車引擎用高矽鋁合金汽缸套。
      本研究採用物理冶金學之角度切入,根據既有熱力學資料、其他相關資料以及熱力學分析歸納各元素與鋁之關係並將之歸類,再考慮合金系統凝固特性與噴覆成型製程之匹配性,選定有潛力的合金系統進行後續評估。由熱力學合金設計軟體Thermo-Calc模擬合金系統之凝固特性以及各相比例,決定合金配方後,依據配方鑄造先導合金材料,並依序進行後續性能評估,包括硬度分析、磨耗特性分析以及工作溫度下之穩定性分析。
      研究結果顯示若以強化機構為分類依據,可將各元素概分為固溶強化型元素如Zn, Mg, Cu、析出強化型元素如Mg, Cu 以及散佈強化型元素如Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Sc等,若以介金屬化合物穩定性為分類依據,可將各元素歸類為產生高溫穩定型介金屬化合物之元素如Zn, Mg, Cu,以及產生非高溫穩定型介金屬化合物之元素如Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Sc等。噴覆成型各系列高矽鋁合金,包括Al-18Si, Al-25Si, Al-25Si-X (X=Fe, Ti, Zr, Cr), Al-25Si-2.5Fe-xZn合金,矽顆粒直徑約2-5µm,遠小於A-25Si-X (X=Fe, Ti, Zr, Cr), Al-25Si-2.5Fe-X (X=Zn, Mg)等鑄造材(>30µm)。噴覆成型l-25Si-X (X=Fe, Ti, Zr, Cr)系列高矽鋁合金合金之介金屬化合物長軸約3µm,遠小於鑄造材的20-50µm,經過擠型處理後可細化成長約1µm且較為圓鈍顆粒。測試的鋁合金系統中,硬度高於HBN 80者在抗磨耗之表現即可與灰鑄鐵抗衡。
      噴覆成型高矽鋁合金微觀組織特性分析之結果顯示矽晶粒藉由多重方位之雙晶機制調整凝固介面成長方向以達到圓鈍化效果。本研究提出硬球模型來解釋包含第二相硬質顆粒之合金系統在變形過程之織構演化情形,模型顯示矽含量約25wt%之噴覆成型高矽鋁合金因矽顆粒平均直徑與矽顆粒平均間距相近,故在擠型過程中不易形成織構,此預測結果與極圖分析結果吻合。
      本研究開發之Al-25Si-2.5Fe-10Zn-1Mg鋁合金由固溶~5wt% Zn之連續相α-Al、介金屬化合物β-AlFeSi, Mg2Si以及富鋅析出相所組成,此合金之硬度在150°C恆溫處理五天後達到穩定值HBN 97,合於本研究所訂定之規格HBN 95~100、抗磨耗性優於傳統汽缸套材料灰鑄鐵。

      As a power-generating unit in an automobile, the performance of an auto engine depends not only on the compatibility between the operation parameters and the engine design, but also on the materials chosen for each part. Traditional auto engine embedded with cylinder liners made of gray cast iron is inferior to that with liners made of high silicon aluminum alloy in terms of weight, hydrocarbons (HC) emission, engine efficiency, etc. High-silicon aluminum cylinder liner has been the trend for future automobile. In spite of the potential for adopting these alloys as the liner materials, there are still some problems need to be overcome.
      This study, on account of the above mentioned demand, is to utilize spray-forming process combined with post process such as extrusion, turning and chemical etching to develop a high-silicon-content aluminum liner. Based on the thermodynamic data and analysis, elements were grouped into several types, and some of which were chosen to modify the alloys. Hardness test, wear test and thermal stability test were conducted to assess the feasibility of these alloys.
      Elements are divided into three categories in terms of strengthening mechanism. These include solution strengthening elements such as Zn, Mg, Cu, precipitation strengthening elements such as Mg, Cu and dispersoid strengthening elements such as Ti, V, Cr, Mn, Fe, Co, Ni, Zr, and Sc. These elements can also be divided into two categories in terms of stability of their corresponding intermetallic compounds (IMC). These include low stability IMC forming element such as Zn, Mg, Cu and high stability IMC forming element such as Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Sc.
      The results show that the sizes of silicon particles range from 2~5 μm for spray-formed Al-Si alloys including Al-18Si, Al-25Si, Al-25Si-X (X=Fe, Ti, Zr, Cr), Al-25Si-2.5Fe-xZn and is much smaller than that of cast Al-Si alloys including A-25Si-X (X=Fe, Ti, Zr, Cr), Al-25Si-2.5Fe-X (X=Zn, Mg). The long axis of the acicular intermetallic compounds in spray-formed Al-25Si-X (X=Fe, Ti, Zr, Cr) alloys is about 3 μm, which is much smaller than that in cast alloys. The intermetallic compounds are broken into particles with lowered aspect ratio after extrusion. The results of wear test show that high silicon-content aluminum alloys with bulk hardness greater than HBN 80 can compete with gray cast iron in wear resistance.
      Studies on the microstructural characteristics of the spray-formed high-silicon-content aluminum alloy indicate that the morphologies of silicon particles in these alloys are spheroidized via twinning mechanism. A hard-ball model is proposed here to describe the texture evolution of materials composed of continuous matrix and non-deformable second phase particles during deformation. The model predicts that the texture intensity of spray-formed high-silicon-content aluminum alloy is insignificant due to the similar magnitudes between the average silicon particle size and the average inter-particle spacing. The prediction is quite correspondent with the results of pole figure analysis of this alloy.
      The developed Al-25Si-2.5Fe-10Zn-1Mg alloy is composed of continuous α-Al, intermetallic compounds β-AlFeSi, Mg2Si and Zn-rich precipitates. The hardness reaches a stable value of HBN 97 after hold at 150°C for five days and is within the specification HBN 95~110 pre-assigned at the beginning of this study. The wear resistance of this alloy is better than that of gray cast iron when slide against spheroidal graphite cast iron in lubricated condition at 125°C.

    中文摘要 .................................................... I Abstract .................................................. III 致謝 ........................................................ VI 目錄 ...................................................... IX 表目錄 ..................................................... XIII 圖目錄 .................................................... XIV 符號說明 ................................................ XX 第一章 前言 ................................................ 1 1.1 噴覆成型製程研究回顧 ................................... 1 1.2 高抗磨耗性鋁合金研究回顧 ............................... 3 1.3 高溫穩定型鋁合金研究回顧 ............................... 6 1.4 研究背景及目的 ......................................... 7 第二章 基礎理論 ............................................ 10 2.1 材料強化機構 ........................................... 10 2.2 高溫穩定性 ............................................. 10 2.3 磨耗行為 ............................................... 12 2.3.1 磨耗機構 ............................................. 12 2.3.2 影響磨耗行為之因子 ................................... 14 2.3.3 潤滑機制 ............................................. 15 第三章 實驗方法及步驟 ...................................... 16 3.1 實驗儀器及軟體 ......................................... 16 3.2 實驗材料 ............................................... 17 3.3 實驗方法及步驟 ......................................... 17 3.3.1 熱力學分析與合金設計 ................................. 19 3.3.2 先導鑄造合金之製備 ................................... 20 3.3.3 先導噴覆成型合金之製備 ............................... 21 3.3.4 磨耗實驗 ............................................. 22 3.3.5 高溫穩定性試驗 ....................................... 23 3.3.6 成型性試驗 ........................................... 24 3.3.7 試片製備流程與性質量測方法 ........................... 24 第四章 結果與討論 .......................................... 26 4.1熱力學分析與合金設計 .................................... 26 4.1.1添加元素之分類 ........................................ 26 4.1.1.1強化機構分析 ........................................ 26 4.1.1.2第二相之尺寸穩定度分析 .............................. 27 4.1.1.3相生成順序分析 ...................................... 27 4.1.1.4添加元素間之取代性 .................................. 28 4.1.2凝固過程分析 .......................................... 29 4.1.2.1ˉAl-25Si-xFe ........................................ 30 4.1.2.2ˉAl-25Si-xZr ........................................ 32 4.1.2.3ˉAl-25Si-xTi ........................................ 32 4.1.2.4ˉAl-25Si-xCr ........................................ 33 4.1.2.5ˉAl-25Si-xMg-yZn-zNi ................................ 34 4.2先導合金系統分析 ........................................ 38 4.2.1 Mg以及Zn強化系統 ..................................... 38 4.2.2 介金屬化合物散佈強化系統 ............................. 40 4.2.2.1 Al-25Si-xFe系列 .................................... 41 4.2.2.2 Al-25Si-xTi, Al-25Si-xZr, Al-25Si-xCr 系列 ......... 43 4.2.3 結合固溶強化及介金屬化合物散佈強化之系統 ............. 44 4.3 磨耗試驗 ............................................... 45 4.3.1 起始材料微觀組織特徵 ................................. 45 4.3.2 磨耗試驗之潤滑特性分析 ............................... 45 4.3.3 接觸面積與磨耗距離之關係 ............................. 47 4.3.4 接觸電阻與摩擦係數特徵 ............................... 47 4.3.5 硬度對磨耗特性之影響 ................................. 51 4.4 高溫穩定性試驗 ......................................... 53 4.5 噴覆成型製程對高矽鋁合金微觀組織之影響 ................. 56 4.6 擠型製程對噴覆成型高矽鋁合金微觀組織之影響 ............. 58 4.6.1 擠型製程之適當操作條件 ............................... 58 4.6.2 擠型製程對噴覆成型高矽鋁合金方向性之影響 ............. 59 4.7 高矽鋁合金汽缸套製作流程 ............................... 62 第五章 結論 ................................................ 63 參考文獻 ................................................... 65

    1. R.K. Dube, “Particle Technology Methods for Making Metal Strip, Part 1,” Powder Metall. International, Vol.13, No.4, pp.118-90 (1981)
    2. R.K. Dube, “Particle Technology Methods for Making Metal Strip, Part 2,” Powder Metall. International, Vol.14, No.2, pp.45-8 (1982)
    3. R.K. Dube, “Particle Technology Methods for Making Metal Strip, Part 3,” Powder Metall. International, Vol.14, No.2, pp.158-63 (1982)
    4. R.K. Dube, “Particle Technology Methods for Making Metal Strip, Part 4,” Powder Metall. International, Vol.14, No.2, pp.163-5 (1982)
    5. R.K. Dube, “Particle Technology Methods for Making Metal Strip, Part 5,” Powder Metall. International, Vol.14, No.4, pp.36-40 (1982)
    6. E. J. Lavernia and N. J. Grant, “Spray Deposition of Metals: A Review,” Mater. Sci. Eng., Vol.98, pp.381-94 (1988)
    7. H. Henein, P.L. Meyer, D.J. Holve and M.A. Kugni, “On-Line Measurement of Powder Size Distribution in Zinc Atomization,” The Int’l J. Powder Metall., Vol.28, No.2, pp.149-60 (1992)
    8. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, p.37 (1989)
    9. K.P. Mingard, B. Cantor, I.G. Palmer, I.R. Hughes, P.W. Alexander, T.C. Willis and J. White, “Macro-segregation in aluminium alloy sprayformed billets,” Acta Metall. & Mater., Vol.48, pp.2435-49 (2000)
    10. L. Warner, C. Cai, S. Annavarapu and R. Doherty, “Modelling Microstructural Development in Spray Forming: Experimental Verification,” Powder Metall., Vol.40, No.2, pp.121-5 (1997)
    11. C. A. Tsao and N. J. Grant, “Spray-Forming 2024 Aluminum Alloy Using the Liquid Dynamic Compaction Technique with the Linear USGA Atomizer,” Proceedings of the Second International Conference on Rapidly Solidified Materials, San Diego, March 7-9, 1988, Rapidly Solidified Materials: Properties and Processing, ASM International, pp.163-70 (1988)
    12. L.D. Castillo and E.J. Lavernia, “Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(Ag-Mn) Alloys,” Metall. & Mater. Trans. A, Vol.31A, pp.2287-98 (2000)
    13. V.C. Srivastara, R.K. Mandal and S.N. Ojha, “Microstructure and Mechanical Properties of Al-Si-Alloys Produced by Spray Forming Process,” Mater. Sci. Eng. A, Vol.A304-306, pp.555-8 (2001)
    14. H. Sano, N. Tokizane, Y. Ohkubo and K. Shibue, “Spray Formed Aluminium Alloy Components for Automotive Applications,” Sumitomo Light Metal Tech. Report, Vol.35, No.3-4, pp.123-30 (1994)
    15. Y. Wu, W.A. Cassada and E.J. Lavernia, “Microstructure and Mechanical Properties of Spray-Deposited Al-17Si-4.5Cu-0.6Mg Wrought Alloy,” Metall. & Mater. Trans. A, Vol.26A, pp.1235-47 (1995)
    16. M.D. Sanctis, “Structure and Properties of Rapidly Solidified Ultrahigh Strength Al-Zn-Mg-Cu Alloys Produced by Spray Deposition,” Mater. Sci. Eng. A, Vol.A141, pp.103-21 (1991)
    17. B.P. Underhill, P.S. Grant and B. Cantor, “Microstructure of Spray-Formed Al Alloy 2618,” Mater. & Design, Vol.14, No.1, pp.45-7 (1993)
    18. Y.C. Zhang, Y.Y. Hao, Z.F. Liu and G.Y. Chen, “Production of Rapidly Solidified Al-Pb-Cu Alloy by Liquid Stirring, Ultrasonic Gas Atomization and Liquid Dynamic Compaction,” Mater. Sci. Eng., Vol.98, pp.119-21 (1988)
    19. E.J. Lavernia, “The Evolution of Microstructure during Spray Atomization and Deposition,” Int’l J. Rapid Solidification, Vol.5, pp.47-85 (1989)
    20. J.A. Juarez-Islas, S. Su, R. Perez, B. Campillo and E.J. Lavernia, “Solid Solution of Cu in (Al-Cu)-SiCp Metal Matrix Composites Processed by Spray Atomization and Codeposition,” Mater. Sci. Eng., Vol.A179/A180, pp.609-13 (1994)
    21. T. Ebert, F. Moll and U. Kainer, “Spray Forming of Magnesium Alloys and Composites,” Powder Metall., Vol.40, No.2, pp.126-30 (1997)
    22. J. Baram, “Structure and Properties of a Rapidly Solidified Al-Li-Mn-Zr Alloy for High-Temperature Application: Part II. Spray Atomization and Deposition Processing,” Metall. Trans. A, Vol.22A, pp.2515-22 (1991)
    23. J.A. Juarez-Islas, R. Perez, P. Lengsfeld and E.J. Lavernia, “Microstructural and Mechanical Evaluations of Spray-Deposited 7xxx Al-Alloys after Conventional Consolidation,” Mater. Sci. Eng. A, Vol.A179/A180, pp.614-8 (1994)
    24. B. Yang, F. Wang, J.S. Zhang, B.Q. Xiong and X.J. Duan, “The Effect of Mn on the Microstructure of Spray-Deposited Al-20Si-5Fe-3Cu-1Mg Alloy,” Scripta Mater., Vol.45, pp.509-15 (2001)
    25. S. Hariprasad, S.M.L. Sastry, K.L. Jerina and R.J. Lederich, “Microstructure and Mechanical Properties of Dispersion-Strengthened High-Temperature Al-8.5Fe-1.2V-1.7Si Alloys Produced by Atomized Melt Deposition Process,” Metall. Trans. A, Vol.24A, pp.865-74 (1993)
    26. W.J. Kim, J.H. Yeon and J.C. Lee, “Superplastic Deformation Behavior of Spray-deposited Hyper-eutectic Al-25Si Alloy,” J. Alloys & Compounds, Vol.308, pp.237-43 (2000)
    27. N. Tokizane, H. Sano, K. Shibue and Y. Ohkubo, “Effect of Spray Forming Parameters on Microstructure and Mechanical Properties of Al-Si Alloy,” Sumitomo Light Metal Tech. Report, Vol.35, No.3-4, pp.117-22 (1994)
    28. M. Gupta, C. Lane and E.J. Lavernia, “Microstructure and Properties of Spray Atomized and Deposited Al-7Si/SiCp Metal Matrix Composites,” Scripta Metall. & Mater., Vol.26, pp.825-30 (1992)
    29. M. Gupta, F.A. Mohamed and E.J. Lavernia, “The Effects of Solidification Phenomena on the Distribution of SiC Particulates during Spray Atomization and Co-Deposition,” Int’l J. Rapid Solidification, Vol.6, pp.247-84 (1991)
    30. A.R.E. Singer, “Metal Matrix Composites Make by Spray Forming,” Mater. Sci. Eng., Vol.A135, pp.13-7 (1991)
    31. M. Gupta, I.A. Ibrahim, F.A. Mohamed and E.J. Lavernia, “Wetting and Interfacial Reactions in Al-Li-SiCp Metal Matrix Composites Processed by Spray Atomization and Deposition,” J. Mater. Sci., Vol.26, pp.6673-84 (1991)
    32. A.R.E. Singer and S. Ozbek, “Metal Matrix Composites Produced by Spray Codeposition,” Powder Metall., Vol.28, pp.72-8 (1985)
    33. R.H. Bricknell, “The Structure and Properties of a Nickel-Base Superalloy Produced by Osprey Atomization-Deposition,” Metall. Trans. A, Vol.17A, pp.583-91 (1986)
    34. M. Wu, T.S. Srivatsan, J.R. Pickens and E.J. Lavernia, “Microstructure and Mechanical Properties of Spray Deposited Al-Cu-Li-Ag-Mg-Zr,” Scripta Metall. & Mater., Vol.27, pp.761-6 (1992)
    35. J.M. Marinkovich, F.A. Mohamed, J.R. Pickens and E.J. Lavernia, “The Spray Atomization and Deposition of Weldalite 049,” JOM, p.36 (1989)
    36. C.H. Passow, J.-H. Chun and T. Ando, “Spray Deposition of a Sn-40 Wt Pct Pb Alloy with Uniform Droplets,” Metall. Trans. A, Vol.24, pp.1187-93 (1993)
    37. M. Gupta, F.A. Mohamed and E.J. Lavernia, “Heat Transfer Mechanism and their Effect on Microstructure during Spray Atomization and Codeposition of Metal Matrix Composites,” Symposium on Innovative Inorganic Composites Processing, Detroit, Oct. 8-11, 1991, Metall. Soc., Mater. Sci. Eng. A, Vol.A144, pp.99-110 (1991)
    38. S. Annavarapu, D. Apelian and A. Lawley, “Spray Casting of Steel Strip: Process Analysis,” Metall. Trans. A, Vol.21A, No.12, pp.3231-56 (1990)
    39. M. Gupta, K. Bowo, E.J. Lavernia and J.C. Earhman, “Effect of Particulate Type on Fatigue Crack Propagation in Al-Li Based Spray Deposited Metal Matrix Composites,” Scripta Metall. & Mater., Vol.28, pp.1055-8 (1993)
    40. Y.H. Su, Y.M. Chen, R.W. Lin and C.-Y.A. Tsao, “Sensitivity Study on the Effects of Process Parameters on Spray Forming Pb-35Sn Alloy,” Powder Metall., Vol.40, No.3, pp.196-200 (1997)
    41. J. Llorca, A. Martin, J. Ruiz and M. Elices, “Particulate Fracture during Deformation of a Spray Formed Metal-Matrix Composites,” Metall. Trans. A, Vol.24A, pp.1575-88 (1993)
    42. J.L. Wang, Y.H. Su and C.-Y.A. Tsao, “Structural Evolutions of Conventional Cast Dendritic and Spray-Cast Non-Dendritic Structures during Isothermal Holding in the Semi-Solid State,” Scripta Materialia, Vol.37, No.12, pp.2003-7 (1997)
    43. P.S. Grant, B. Cantor and Z. Katgerman, “Modelling of Droplet Dynamic and Thermal Histories during Spray Forming. I. Individual Droplet Behaviour,” Acta Metall. & Mater., Vol.41, No.11, pp.3097-108 (1993)
    44. P.S. Grant, B. Cantor and Z. Katgerman, “Modelling of Droplet Dynamic and Thermal Histories during Spray Forming. II. Effect of Process Parameters,” Acta Metall. & Mater., Vol.41, No.11, pp.3109-18 (1993)
    45. E.J. Lavernia, E.M. Gutierrez-Miravete, J. Szekely and N.J. Grant, “A Mathematical Model of the Liquid Dynamic Compaction Process. Part 1:Heat Flow in Gas Atomization,” Int'l J. Rapid Solidification, Vol.4, No.1-2, pp.89-124 (1988)
    46. P. Mathur, S. Annavarapu, D. Apelian and A. Lawley, “Spray Casting: an Integral Model for Process Understanding and Control,” Mater. Sci. Eng., Vol.A142, No.2, pp.261-76 (1991)
    47. E. Gutierriz-Miravete, G. Trapaga and J. Szekely, “Mathematical Modelling of the Spray Forming Process,” Casting of Near Net Shape Products, Metall. Soc., pp.133-51 (1988)
    48. E. Gutierrez-Miravete, E.J. Lavernia, G.M. Trapaga, J. Szekely and N.J. Grant, “A Mathematical Model of the Spray Deposition Process,” Metall. Trans. A, Vol.20A, No.1, pp.71-85 (1989)
    49. C.C. Marchi, H. Liu, E.J. Lavernai and R.H. Rangel, A. Sickinger and E. Muehlberger, “Numerical analysis of the deformation and solidification of a single droplet impinging onto a flat substrate,” J. Mater. Sci., Vol.28, pp.3313-21 (1993)
    50. P. Mathur, D. Apelian and A. Lawley, “Analysis of the Spray Deposition Process,” Acta Metall., Vol.37, No.2, pp.429-43 (1989)
    51. J.K. McCoy, A.J. Markworth, E.W. Collings and R.S. Brodkey, “Cooling and Solidification of Liquid-Metal Drops in a Gaseous Atmosphere,” J. Mater. Sci., Vol.27, pp.761-6 (1992)
    52. G. Rai, E. Lavernia and N.J. Grant, “Powder Size and Distribution in Ultrasonic Gas Atomization,” JOM, Vol.37, No.8, pp.22-6 (1985)
    53. J.B. See and G.H. Johnston, “Interactions between Nitrogen Jets and Liquid Lead and Tin Streams,” Powder Technol., Vol.21, No.1, pp.119-33 (1978)
    54. J.C. Baram, M.K. Veistinen, E.J. Lavernia, M. Abinante and N.J. Grant, “Pressure Build-up at the Metal Delivery Tube Orifice in Ultrasonic Gas Atomization,” J. Mater. Sci., Vol.23, No.1, pp.2457-63 (1988)
    55. C.G. Levi and R. Mehrabian, “Heat Flow during Rapid Solidification of Undercooled Metal Droplets,” Metall. Trans. A, Vol.13A, No.2, pp.221-34 (1982)
    56. Y.M. Chen, Y.H. Su, R.W. Lin and C.-Y.A. Tsao, “Modeling of Atomization Rate During Gas Atomization,” Acta Materialia, Vol.46, No.3, pp.1011-23 (1998)
    57. Y.H. Su and C.-Y. A Tsao, “Modelling of Solidification of Molten Metal Droplet during Atomization,” Metall. & Mater. Trans. B, Vol.28B, No.12, pp.1249-55 (1997)
    58. W. T. Kim, D. L. Zhang and B. Cantor, “Nucleation of Solidification in Liquid Droplets,” Metall. Trans. A, Vol.22A, No.10, pp.2487-501 (1991)
    59. S. Kang, D.-H. Chang, “Modelling of billet shapes in spray forming using a scanning atomizer,” Mater. Sci. Eng. A, Vol.260, pp.161-9 (1999)
    60. Y.J. Lin, J.E. Bobrow, D.R. White and E.J. Lavernia, “Modeling of Spray-Formed Materials: Geometrical Considerations,” Metall. Trans. A, Vol.31A, No.11, pp.2917-29 (2000)
    61. J. Fukai and T. Ando, “Microstructure Development in Alloy Splats during Rapid Solidification,” 2nd Int’l Conf. Spray Deposition and Melt Atomization and 5th Int’l Conf. Spray Forming, Vol.2, Bremen, Germany, Jun. 22-35, 2003, pp.8.89-99 (2003)
    62. J.H. Hattel, N.H. Pryds and T.B. Pedersen, “Numerical Model for the Prediction of Gaussian and Billet Shapes,” 2nd Int’l Conf. Spray Deposition and Melt Atomization and 5th Int’l Conf. Spray Forming, Vol.2, Bremen, Germany, Jun. 22-35, 2003, pp.8.109-15 (2003)
    63. W.D. Cai and E.J. Lavernia, “Modeling of Porosity during Spray Forming,” Mater. Sci. Eng. A, Vol.226, pp.8-12 (1997)
    64. W.D. Cai and E.J. Lavernia, “Modeling of Porosity during Spray Forming: Part I. Effects of Processing Parameters,” Metall. Trans. B, Vol.29B, No.5, pp.1085-95 (1998)
    65. W.D. Cai and E.J. Lavernia, “Modeling of Porosity during Spray Forming: Part II. Effects of Atomization Gas Chemistry and Alloy Compositions,” Metall. Trans. B, Vol.29B, No.5, pp.1097-106 (1998)
    66. B. P. Bewlay and B. Cantor, “Modelling of Spray Deposition: Measurements of Particle Size, Gas Velocity, Particle Velocity and Spray Temperature in Gas-Atomized Sprays,” Metall. Trans. B, Vol.21B, pp.899-912 (1990)
    67. J. Baram, “Pressure Characteristics at the Pour-Tube Orifice in Ultrasonic Gas Atomization,” Mater. Sci. Eng., Vol.78, pp.65-9 (1988)
    68. B. P. Bewlay and B. Cantor, “Gas Velocity Measurements from a Close-Coupled Spray Deposition Atomizer,” Mater. Sci. Eng., Vol.A118, No.1-2, pp.207-22 (1989)
    69. A. Schneider, V. Uhlenwinkel, H. Harig and K. Bauckhage, “Overspray Injection in Spray Forming of CuSn13.5 Billets,” 2nd Int’l Conf. Spray Deposition and Melt Atomization and 5th Int’l Conf. Spray Forming, Vol.2, Bremen, Germany, Jun. 22-35, 2003, p.6.39-50 (2003)
    70. A. G. Leatham, A. Ogilvy and L. Elias, “The Osprey Process Current Status and Future Possibilities,” P/M in Aerospace, Defense and Demanding Applications-1993, Metal Powder Industries Federation, Princeton, pp.165-75 (1993)
    71. A.G. Leatham, J.S. Coombs, J.B. Forrest and S. Ahn, “The Osprey Process: An Overview of the Commercial Developments for Spray Forming Round Billets in Advanced Ferrous and Non-ferrous Alloys,” the 2nd Pacific Rim Int. Conf. on Adv. Mater. & Processing, Jun. 18-22, 1995, Kyongju, Korea, (1995)
    72. H. Liu, X. Zeng and E.J. Lavernia, “Processing Maps for Reactive Atomization and Deposition Processing,” Scripta Metall. & Mater., Vol.29, No.10, pp.1341-4 (1993)
    73. E. Rabinowicz, “Friction and Wear of Materials,” 2nd ed., Wiley-Interscience, New York, USA, (1995)
    74. J. Lane, “Aluminium in Building,” Ashgate Publish Ltd., Hants, England, UK, (1992)
    75. C.R. Brooks, “Heat Treatment, Structure, and Properties of Nonferrous Alloys,” American Society for Metals, Metals Park, Ohio, USA, (1982)
    76. T. Sheppard, “Extrusion of Aluminium Alloys,” Kluwer Academic Publishers, Dordrecht, The Netherlands, (1999)
    77. R.E. Sanders, Jr., “Technology Innovation in Aluminum Products,” JOM, vol.53, No.2, p.21-5 (2001)
    78. P. Gilman, “High Temperature Aluminum in the Transportation Industry,” in: D. Weissman-Berman, Research Guidelines for Aluminum Product Applications in Transportation and Industry /Metal Matrix Composites, Advanced Aluminum Forming Processes, Laminated Structures, American Society of Mechanical Engineers, New York, pp.59-65 (1994)
    79. C.-Y. Chen and C.-G. Chao, “Effect of Particle-Size Distribution on the Properties of High-Volume-Fraction SiC-Al-Based Composites,” Metall. Trans. A, Vol.31A, pp.2351-9 (2000)
    80. B. Maruyama, “Progress and Promise in Aluminum Composites,” Adv. Mater. & Processes, Vol.155, No.6, pp.47-50 (1999)
    81. C.-Y. Lin, H.B. McShane and R.D. Rawings, “Structure and Properties of Functionally Gradient Aluminium Alloy 2124/SiC Composites,” Mater. Sci. and Technol., Vol.10, pp.659-64 (1994)
    82. D.L. Zhang, C. Brindley and Cantor, “The Microstructures of Aluminium Alloy Metal-Matrix Composites Manufactured by Squeeze Casting,” J. Mater. Sci., Vol.28, pp.2267-72 (1993)
    83. J.U. Ejiofor and R.G. Reddy, “Developments in the Processing and Properties of Particulate Al-Si Composites,” JOM, Vol.49, No.11 pp.31-7 (1997)
    84. V.M. Kevorkijan, “Aluminum-Base Composites,” Adv. Mater. & Processes Vol.155, No.5, pp.27-9 (1999)
    85. Y. Wang, K. Brogan and S.C. Tung, “Wear and Scuffig Characteristics of Composite Polymer and Nickel/Ceramic composite Coated Piston Skirts against Aluminum and Cast Iron Cylinder Bores,” Wear, Vol.250, pp.706-17 (2001)
    86. 郭敏郎, “引擎活塞環用自潤性鋁/碳化矽/固體潤滑劑複合材料之半固態製程及其組織與性質間之關係,” 國立成功大學材料科學及工程研究所, 碩士論文, (1996)
    87. J. Zhou, J. Duszczyk, B.M. Korevaar, “Structural Development during the Extrusion of Rapidly Solidified Al-20Si-5Fe-3Cu-1Mg Alloy,” J. Mater. Sci. Eng., Vol.26, pp.824-34 (1991)
    88. T. Satoh, K. Okimoto, S. Nishida and K. Matsuki, “Superplastic-Like Behavior of Rapid-Solidification-Processed Hyper-Eutectic Al-Si P/M Alloys,” Scripta Metall. & Mater., Vol.33, No.5, pp.819-24 (1995)
    89. Woo-Jin Kim , J.H. Yeon and J.C. Lee, “Superplastic Deformation Behavior of Spray-Deposited Hyper-Eutectic Al–25Si Alloy,” J. Alloys & Compounds, Vol.308, pp.237–43 (2000)
    90. A.T. Alpas and J. Zhang, “Wear Rate Transitions in Cast Aluminum-Silicon Alloys Reinforced with SiC Particles,” Scripta Metall. & Mater. Vol.26, No.3, pp.505-9 (1992)
    91. J. Zhang and A.T. Alpas, “Delamination Wear in Ductile Materials Containing Second Phase Particles,” Mater. Sci. and Eng., Vol.A160, pp.25-35 (1993)
    92. A.T. Alpas, H. Hu and J. Zhang, “Plastic Deformation and Damage Accumulation below the Worn Surfaces,” Wear, Vol.162-164, pp.188-95 (1993)
    93. C. Subramanian, “On Mechanical Mixing during Dry Sliding of Aluminium-12.3wt.% Silicon Alloy against Copper,” Wear, Vol.161, pp.53-60 (1993)
    94. X.Y. Li and K.N. Tandon, “Mechanical Mixing Induced by Sliding Wear of an Al-Si Alloy against M2 Steel,” Wear, Vol.225-229, pp.640-48 (1999)
    95. S. Wilson and A.T. Alpas, “Thermal Effects on Mild Wear Transitions in Dry Sliding of an Aluminum Alloy,” Wear, Vol.225, pp.440-9 (1999)
    96. A.T. Alpas and J. Zhang, “Wear Rate Transitions in Cast Aluminum-Silicon Alloys Reinforced with SiC Particles,” Scripta Metall. & Mater., Vol.26, No.3, pp.505-9, (1992)
    97. A.J. Perez-Unzueta and J.H. Beynon, “Microstructure and Wear Resistance of Pearlitic Rail Steels,” Wear, Vol.162-164, pp.173-82 (1993)
    98. J. Zhang and A.T. Alpas, “Delamination Wear in Ductile Materials Containing Second Phase Particles,” Mater. Sci. and Eng., Vol.A160, pp.25-35 (1993)
    99. A. Somi Reddy, B.N. Pramila Bai, K.S.S. Murthy and S.K. Biswas, “Wear and Seizure of Binary Al-Si Alloys,” Wear, Vol.171, pp.115-27 (1994)
    100. A. Somi Reddy, B.N. Pramila Bai, K.S.S. Murthy and S.K. Biswas, “Mechanism of Seizure of Aluminium-Silicon Alloys Dry Sliding against Steel,” Wear, Vol.181-183, pp.658-67 (1995)
    101. H. Torabian, J.P. Pathak and S.N. Tiwari, “Wear Characteristics of Al-Si Alloys,” Wear, Vol.172, pp.49-58 (1994)
    102. S. Yamauchi, K. Shibue, Y. Okubo, H. Sano, and S. Inumalu, “Development of Wear-Resistant P/M Aluminum Alloys ‘PA4XX’,” Bulletin of the Japan Inst. of Metal, Vol.27, No.6, pp.492-5 (1988)
    103. J. Zhang and A. Alpus, “Wear Regimes in Ceramic Particulate Reinforced Aluminum Alloys,” Proceedings ASM 1993 Mater. Congress, Materials Week ‘93, Pittsburgh, Oct. 17-21, 1993, pp.65-77 (1993)
    104. Y. Ohata, K, Fukui, I. Iwai, I. Murase, “Development of High Wear Resistance Al-Si Alloy”, Bulletin of the Japan Inst. of Metal, Vol.24, No.4, pp.307-9 (1985)
    105. N. Tokizane, H. Sano, K. Shibue and Y. Ohkubo, “Effect of Spray Forming Parameters on Microstructure and Mechanical Properties of Al-Si Alloy,” Sumitomo Light Metal Tech. R., Vol.10, pp.117-22 (1994)
    106. Y. Yamamoto, S. Gondo and J. Kim, “Wear Characteristics of Aluminum-Silicon Sliding against Steel in HFC134a©,” Lubrication Engineering, Vol.56, No.3, pp.32-9 (2000)
    107. D.H. Xiao, J.N. Wang, D.Y. Ding and H.L. Yang, “Effect of Rare Earth Ce Addition on the Microstructure and Mechanical Properties of an Al-Cu-Mg-Ag Alloy,” J. Alloys & Compounds, Vol.352, pp.84-8 (2003)
    108. D.M.J. Wilkes and H. Jones, “A Perspective on the High Resistance to Coarsening and Durability of Silicide Dispersions in RSPM Al-Fe-V-Si Alloys,” Sci. Technol. of Rapid Solidification and Processing, pp.157-71 (1995)
    109. W.W. Park, B.S. You and N.J. Kim, “Microstructure and Mechanical Properties of Rapidly Solidified Al-Si-Fe-X Base Alloys,” Mater. & Design, Vol.17, No.5/6, pp.255-9 (1996)
    110. J.M. Wu, S.L. Zheng and Z.Z. Li, “Thermal Stability and its Effects on the Mechanical Properties of Rapidly Solidified Al-Ti Alloys,” Mater. Sci. Eng., Vol.A289, pp.246-54 (2000)
    111. S.J. Zhu, K. Kuchařová and J. Čadek, “High Temperature Creep in an Al-8.5Fe-1.3V-1.7Si Alloy Produced by Rapid Solidification,” Metall. & Mater. Sci. A, Vol.31A, pp.2229-37 (2000)
    112. J. Čadek, K. Kuchařová and S.J. Zhu, “High Temperature Creep Behaviour of an Al-8.5Fe-1.3V-1.7Si Alloy Reinforced with Silicon Carbide Particulates,” Mater. Sci. Eng., Vol.A283, pp.172-80 (2000)
    113. V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov and V.I. Yelagin, “Scientific Priciples of Making and Alloying Addition of Scandium to Aluminium Alloys,” Mater. Sci. Eng., Vol.A280, pp.30-6 (2000)
    114. U. Kettner, H. Rehfeld, C. Engelke and H. Neuhäuser, “A Comparison of the Plastic Behaviour of Fe3Al and Fe3Si in the Temperature Range of 300±973 K,” Intermetallics, Vol.7, pp.405-14 (1999)
    115. 胡塵滌, 康慧貞, “介金屬化合物粉末也金與複合材料,” Chinese Mater. Sci. Bulletin., Vol.9, No.1, pp.24-30 (2002)
    116. 顧均豪, 揚錦添, “航太用超塑性鈦鋁介金屬合金,” Chinese Mater. Sci. Bulletin., Vol.9, No.1, pp.6-12 (2002)
    117. K.L. Sahoo and C.S. Sivaramakrishnan, “Some Studies on Al-8.3Fe- 0.8V-0.9Si Alloy for Near Net Shape Casting,” J. Mater. Processing Technol., Vol.135, pp.253-7 (2003)
    118. D.N. Seidman, E.A. Marquis and D.C. Dunand, “Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys,” Acta Mater., Vol.50, pp.4021-35 (2002)
    119. C.B. Fuller, D.N. Seidman and D.C. Dunand, “Mechanical Properties of Al(Sc,Zr) Alloys at Ambient and Elevated Temperatures,” Acta Mater., Vol.51, pp.4803-14, (2003)
    120. ASM Handbook, 10th ed., Vol.1, “Properties and Selection: Iron, Steels, and High Performance Alloys,” p.31, (1990)
    121. 黃俊凱, “噴覆成型、半固態電磁攪拌及鑄造高矽鋁合金磨耗性質之研究,” 國立成功大學材料科學及工程研究所, 碩士論文 (2002)
    122. J. Sabatini, “One Liner,” Automobile Design and Production, No.6, (2000) Retrieved June 10, (2004), from the World Wide Web: http://www.autofieldguide.com/columns/jeff/0600mat.html
    123. F. Rückert, P. Stocker, R. Biedermann and R. Rieger, “Cylinder Liner of a Hypereutectic Aluminum/Silicon Alloy for Use in a Crankcase of a Reciprocating Piston Engine and Process for Producing Such a Cylinder Liner,” US Patent No.6096143, (2000)
    124. W.J. Kim, J.H. Yeon and J.C. Lee, “ Superplastic Deformation Behavior of Spray-Deposited Hyper-Eutectic Al-25Si Alloy,” J. Alloys & Compounds, Vol.308, pp.237-43 (2000)
    125. W.T. Carter, Jr., M.G. Benz, A.K. Basu, R.J. Zabala, B.A. Knudsen, R.M. Forbes Jones, H.E. Lippard, and R.L. Kennedy, “The CMSF Process: The Spray Forming of Clean Metal,” JOM-e, Vol.51, No.4, (1999). Retrieved January 25, (2001), from the World Wide Web: http://www.tms.org/pubs/journals/JOM/9904/Carter/Carter-9904.html
    126. F. Rückert, P. Stocker, R. Biedermann and R. Rieger, “Cylinder Liner Comprising a Supereutectic Aluminum/Silicon Alloy for Sealing into a Crankcase of a Reciprocating Piston Engine and Method of Producing Such a Cylinder Liner,” US Patent No.5916390, (1999)
    127. M. Wu, T. S. Srivatsan, J. R. Pickens and E. J. Lavernia, “Microstructure and Mechanical Properties of Spray Deposited Al-Cu-Li-Ag-Mg-Zr,” Scripta Metall. & Mater., Vol.27, pp.761-66 (1992)
    128. 江俊憲, “噴覆成型與傳統鑄造AC9A鋁合金之微結構及性質探討,” 國立成功大學材料科學及工程研究所, 碩士論文, (2000)
    129. Material Properties Data- Silicon Retrieved Feb. 29, (2004), from the World Wide Web: http://www.matweb.com/search/SpecificMaterial.asp?
    bassnum=MESi00, (2004)
    130. T.H. Courtney, “Mechanical Behavior of Materials,” McGraw-Hill, Singapore, (1990)
    131. G.E. Dieter, “Mechanical Metallurgy,” McGraw-Hill, Singapore, (1988)
    132. T. W. Clyne, P. J. Withers, D. R. Clarke, S. Suresh and I. M. Ward, “An Introduction to Metal Matrix Composites,” Cambridge University Press, (1995)
    133. J.R. Davis, “Alloying, Understanding the Basics,” ASM Int’l, Mater. Park, OH, USA, (2001)
    134. C. Kittel, “Introduction to Solid State Physics,” 7th ed., John-Wiley & Sons, (1996)
    135. W.B. Pearson, “A Handbook of Lattice Spacings and Structures of Metals and Alloys,” Vol.2, Pergamon Press Ltd., London, (1967)
    136. V. Guttmann, “Phase Stability in High Temperature Alloys,” Applied Sci. Pub. Ltd., London, p.94, (1981)
    137. D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys,” 2nd ed., Chapman & Hall, p.147, (1993)
    138. J.W. Martin, R.D. Doherty, “Stability of Microstructure in Metallic Systems,” Cambridge U. Press, UK, p.186, (1976)
    139. P.J. Blau, “Friction Science and Technology,” Marcel Dekker, Inc., New York, (1996)
    140. R.G. Bayer, “Mechanical Wear Prediction and Prevention,” Marcel Dekker, USA, (1994)
    141. H.G. Jeong, D.J. Yoon, E.Z. Kim, H.J. Park and K.H. Na, “The Influence by Hydrostatic Extrusion on the Microstructure and Extrudability of the IM Processed Hypereutectic Al-Si-X Alloys,” J. Mater. Processing Technol., Vol.130-131, pp.438-43 (2002)
    142. J.W. Yeh, S.Y. Yaun and C.H. Peng, “A Reciprocating Extrusion Process for Producing Hypereutectic Al-20wt% Si Wrought Alloys,” Mater. Sci. Eng., Vol.A252, pp.212-21 (1998)
    143. B.Q. Xiong, Y.A. Zhang, Q. Wei and L.K. Shi, “The Study of Primary Si Phase in Spray Forming Hypereutectic Al-Si Alloy,” J. Mater. Processing Technol., Vol.137, pp.183-6 (2003)
    144. F. Wang, B. Yang, X.J. Duan, B.Q. Xiong and J.S. Zhang, “The Microstructure and Mechanical Properties of Spray-Deposited Hypereutectic Al-Si-Fe Alloy,” J. Mater. Processing Technol., Vol.137, pp.191-4 (2003)
    145. P. Fisher, P.S. Cooper and S.R. Thistlethwaite “Dissolution Mechanisms in Aluminium Alloy Additives,” Proceedings of the 1994 123rd TMS Annual Meeting and Exhibition, San Francisco, Feb. 27-Mar.3 1994, Light Metals 1994, Minerals, Metals & Mater. Soc., pp.1027-32 (1994)
    146. D.J. Bristow, R. Cook, S. Lockwood and T.G. Woodcock, “Dissolution Mechanisms of Compressed Additives in Aluminium,” Proceedings of the 1999 128th TMS Annual Meeting, San Diego, Feb. 28-Mar. 4, 1999, Light Metals 1999, Minerals, Metals & Mater. Soc., pp.883-8 (1999)
    147. P.S. Cooper, G. Borge and R.D. Converv “Compacted Product Additives for the Aluminium Casthouse,” Aluminium World, Vol.2, No.1, pp.39-42 (2001)
    148. G. Borge and P. Cooper, “Recent Studies of Compacted Additives Including Industrial Scale Tests,” Proceedings of the 2002 131st TMS Annual Meeting, Seattle, Feb. 17-21, 2002, Light Metals 2002, Minerals, Metals & Mater. Soc., pp.803-9 (2002)
    149. H.P. Bonzel, “Adsorbed Layers on Surfaces, Part 2: Measuring Techniques and Surface Properties Changed by Adsorption,” in LANDOLT-BORNSTEIN: Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter, Vol.42, Physics of Covered Solid Surfaces, Subvolume A, Editor in Chief: O. Madelung, Springer-Verlog Berlin Heidelberg, (2002)
    150. JCPDS-Int’l Centre for Diffraction Data (2001)
    151. W.B. Pearson, “A Handbook of Lattice Spacings and Structures of Metals and Alloys,” Vol.2, Pergamon Press, Oxford, (1967)
    152. H. Bakker, H.P. Bonzel, C.M. Bruff, M.A. Dayananda, W. Gust, J. Horvath, I. Kaur, G.V. Kidson, A.D. Le Claire, H. Mehrer, G.E. Murch, G. Neumann, N. Stolica and N.A. Stolwijk, “Diffusion in Solid Metals and Alloys,” in LANDOLT-BORNSTEIN: Numerical Data and Functional Relationships in Science and Technology New Series, Group III: Crystal and Solid State Physics Vol.26, Editor in Chief: O. Madelung, Springer-Verlag, Berlin, (1990)
    153. J.E. Hatch, “Aluminum: Properties and Physical Metallurgy,” ASM, Metals Park, Ohio, USA, (1984)
    154. J.R. Davis, “Aluminum and Aluminum Alloy,” ASM Int’l, Mater. Park, Ohio, USA, (2001)
    155. R. Lundin and J.R. Wilson, “Rare Earth Metals,” Adv. Mater. & Processes, Vol.158, No.1, pp.52-5 (2000)
    156. B.Yang, F. Wang, J.S. Zhang, B.Q. Xiong and X.J. Duan, “The Effect of Mn on the Microstructure of Spray-Deposited Al-20Si-5Fe-3Cu-1Mg Alloy,” Scripta Mater., Vol.45, pp.509-5 (2001)
    157. N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I. Todd and S. van der Zwaag, “Assessment of Different Techniques for Quantification of α-Al(FeMn)Si and β-AlFeSi Intermetallics in AA 6xxx Alloys,” Materials Characterization, Vol.49, pp.409-20 (2003)
    158. M. Durand-Charre, “The Microstructure of Superalloys,” Gordon and Breach Sci. Publishers, Netherlands, (1997)
    159. J. Zhou, J. Duszczyk, B.M. Korevaar and B. Verlinden, “Characterization of the Hot-Working Behaviour of a P/M Al-20Si-7.5Ni-3Cu-1Mg Alloy by Hot Torsion,” J. Mater. Sci., Vol.27, pp.4247-60 (1992)
    160. N. Ünlü, A. Genç and M.L. Öveçoglu, “Characterization Investigations of Melt-Spun Ternary Al-xSi-3.3Fe (x=10, 20 wt%) Alloy,” J. Alloys & Compounds, Vol.322, No.1-2, pp.249-56 (2001)
    161. B. Yang, F. Wang, J.S. Zhang, B.Q. Xiong and X.J. Duan, “The Effect of Mn on the Microstructure of Spray-Deposited Al-20Si-5Fe-3Cu-1Mg Alloy,” Scripta Mater., Vol.45, pp.509-15 (2001)
    162. W.W. Park, B.S. You and N.J. Kim, “Microstructure and Mechanical Properties of Rapidly Solidified Al-Si-Fe-X Base Alloys,” Mater. & Design, Vol.17, No.5/6, pp.253-9 (1996)
    163. E.W. Deeg, “New Algorithms for Calculating Hertzian Stress, Deformations, and Contact Zone Parameters,” AMP J. Technology, Vol.2, pp.14-24 (1992)
    164. Web Elements™, the periodic table. Retrieved Feb. 29, 2004, from the World Wide Web: http://www.webelements.com/, Mark Winter, The University of Sheffield and WebElements Ltd, UK, (2002)
    165. T. Sheiretov, H. Yoon and C. Cusano, “Scuffing under Dry Sliding Conditions- Part.1: Experimental Studies,” Tribology Trans., Vol.41, No.4, pp.435-46 (1998)
    166. Y. Wang and S.C. Tung, ”Scuffing and Wear Behavior of Aluminum Piston Skirt Coatings against Aluminum Cylinder Liner,” Wear, Vol.225-229, pp.1100-08 (1999)
    167. H. Yoon, T. Sheiretov and C. Cusano, “Scuffing Behavior of 390 Aluminum against Steel under Starved Lubrication Conditions,” Wear, Vol.237, pp.163-75 (2000)
    168. 陳文慶, “高效能汽車引擎用噴覆成型高矽鋁合金汽缸套之研究及開發/引擎的組裝及測試的研發,” 行政院國家科學委員會產學合作研究計畫成果報告, (2004)
    169. R.K. Everett and R.J. Arsenault, “Metal Matrix Composites: Mechanisms and Properties,” Academic Press, CA, p.174, (1991)
    170. M. Gupta and T.S. Srivatsan, “Interrelationship between Matrix Microhardness and Ultimate Tensile Strength of Discontinuous Particulate-Reinforced Aluminum Alloy Composites,” Mater. L., Vol.51, No.3, pp.255–61 (2001)
    171. M. Tiryakioglu, J. Campbell and J.T. Staley, “Hardness-Strength Relationships in Cast Al-Si-Mg Alloys,” Mater. Sci. Forum, Vol.331-337, pp.295-300 (2000)
    172. D.C. Jenkinson, L.M. Hogan, “Modification of Al-Si Alloys with Sr,” J. Cryst. Growth, Vol.28, pp.171-87 (1975)
    173. J.E. Gruzleski and B.M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloys,” AFS, Illinois, USA, (1990)
    174. Personal Communication with Mr. Lee of WeiShin Aluminum Co., Tainan, Taiwan.
    175. Y.H.F. Su, Y.C. Chen and C.Y.A. Tsao, “Workability of Spray-Formed 7075 Al Alloy Reinforced with SiCp at Elevated Temperatures,” Mater. Sci. & Eng., Vol.A364, pp.296–304 (2004)
    176. 陳皓隆, 曹紀元, “以快速凝固噴覆成型製程進行鋁-鈦濺鍍靶材之製作的研發(2/2),” 國科會計畫, (2002)
    177. J.A. Schey, “Introduction to Manufacturing Processes,” 2nd ed., McGraw-Hill Books Co., Singapore, p.251 (1987)
    178. C.-Y. Chen and C.-G. Chao, “Effect of Particle-Size Distribution on the Properties of High-Volume-Fraction SiC-Al-Based Composites,” Metall. Trans., Vol.31A, pp.2351-9 (2000)
    179. B. Maruyama, “Progress & Promise in Aluminum Composites,” Adv. Mater. & Processes Vol.155, No.6, pp.47-50 (1999)
    180. C.-Y. Lin, H.B. McShane and R.D. Rawings, “Structure and Properties of Functionally Gradient Aluminium Alloy 2124/SiC Composites,” Mater. Sci. & Technol., Vol.10, pp.659-64 (1994)
    181. D.L. Zhang, C. Brindley and B. Cantor, “The Microstructures of Aluminium Alloy Metal-Matrix Composites Manufactured by Squeeze Casting,” J. Mater. Sci., Vol.28, pp.2267-72 (1993)
    182. K. Nogita and A. Knuutinen,“Mechanisms of Eutectic Solidification in Al-Si Alloys Modified with Ba, Ca, Y and Yb,” J. Light Metals, Vol.1, No.4, pp.219-28 (2001)
    183. L. Backerud, E. Krol and J. Tamminen, “Solidification Characteristics of Aluminum Alloys,” Vol.1&2, Skanaluminium, Oslo, Norway, (1984)
    184. D.C. Jenkinson, “Aluminum-Silicon Alloys, Cylinder Blocks and Bores, and Method of Making Same,” US Patent No.4068645, (1978)
    185. R. Perrot and J.L. Mazodier, “Hollow Bodies Produced by Powder Extrusion of Aluminum-Silicon Alloys,” US Patent No.4155756, (1979)
    186. W.G. Hesterberg, R.J. Donahue and B.L. Sheaffer, “Hypereutectic Aluminum-Silicon Casting Alloy,” US Patent No.4603665, (1986)
    187. W.G. Hesterberg, R.J. Donahue and B.L. Sheaffer, “Hypereutectic Aluminum-Silicon Casting Alloy,” US Patent No.4821694, (1989)
    188. F. Kiyota, T. Fujita, T. Hirano and S. Horie, “Heat-Resistant, Wear-Resistant, and High-Strength Aluminum Alloy Powder and Body Shaped Therefrom,” US Patent No.4938810, (1990)
    189. J. Barlow, P.H. Evans, N.H. Frank and H.D. Wilson, “Aluminum-Silicon Alloy Article and Method for its Production,” US Patent No.5019178, (1991)
    190. R.J. Donahue, R.A. Lanpheer, W.D. Schultz and B.L. Sheaffer, “Two-Cycle Marine Engine Having Aluminum-Silicon Alloy Block and Iron Plated Pistons,” US Patent No.5129378, (1992)
    191. R.J. Donahue, W.G. Hesterberg, T.M. Cleary and L.I. Toriello, “Method of Casting Hypereutectic Aluminum-Silicon Alloys Using a Salt Core,” US Patent No.5165464, (1992)
    192. R.J. Donahue, T.M. Cleary, B.L. Sheaffer, “Internal Combustion Engine Having a Hypereutectic Aluminum-Copper Pistons,” US Patent No.5253625, (1993)
    193. A.M. Ablett, R. Dzugan and S.J. Lotz, “Method for Forming a Thin-Walled Combustion Liner for Use in a Gas Turbine Engine,” US Patent No.5413647, (1995)
    194. L. Auran, G.H. Rhinehart and S.S. Mehta, “Wear-Resistant Aluminum Alloy and Compressor Piston Formed Therefrom,” US Patent No.5851320, (1998)
    195. F. Rückert, P. Stocker and r. Rieger, “Cylinder Liner of a Hypereutectic Aluminum/Silicon Alloy for Casting into a Crankcase of a Reciprocating Piston Engine and Process for Producing Such a Cylinder Liner, ” US Patent No.5891273, (1999)
    196. W.J. Baxter and A.K. Sachdev, “Heat Treatment for Aluminum Casting Alloys to Produce High Strength at Elevated Temperatures,” US Patent No. 6074501, (2000)
    197. Q.T. Fang and J.R. Van Wert, “Aluminum-Silicon Alloy for High Temperature Cast Components,” US Patent No.6168675, (2001)

    下載圖示 校內:2005-07-30公開
    校外:2007-07-30公開
    QR CODE