簡易檢索 / 詳目顯示

研究生: 林建昌
Lin, Jiann-Chang
論文名稱: 本生燈噴霧火焰理論
Theory of Bunsen Spray Flames
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 76
中文關鍵詞: 本生燈火焰倒置本生燈火焰拉伸噴霧
外文關鍵詞: Inverted Bunsen flame, Stretch, Spray, Bunsen flame
相關次數: 點閱:77下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立本生燈噴霧火焰理論,利用高活化能近似微擾法探討本生燈與倒置本生燈火焰,在含稀薄水噴霧或稀薄燃料(甲醇和乙醇)噴霧作用下之火焰尖端結構。噴霧模式分為完全預蒸發與部分預蒸發。分析對象包括含水噴霧之甲烷火焰、含水噴霧之丙烷火焰、含甲醇噴霧之甲醇火焰及含乙醇噴霧之乙醇火焰。探討的參數包含噴霧量、起始液滴半徑、流場拉伸、Lewis數(Le)、起始氣體自由流速和起始氣體當量比。本生燈火焰承受負拉伸流場的作用,而倒置本生燈火焰則承受正拉伸流場的作用。流場拉伸強度會增強Le>1本生燈火焰與Le<1倒置本生燈火焰之燃燒強度,但減弱Le<1本生燈火焰與Le>1倒置本生燈火焰之燃燒強度。Le>1本生燈火焰及Le<1倒置本生燈火焰,其火焰尖端為閉口;相反地,Le<1本生燈火焰及Le>1倒置本生燈火焰,其火焰尖端則為開口。含水噴霧火焰及含燃料噴霧富油火焰,其火焰強度隨著噴霧量之增大或起始液滴半徑之減小而減弱;若此兩種火焰其尖端為開口狀態,則其開口寬度會變寬。但含燃料噴霧貧油火焰,其火焰強度隨著噴霧量之增大或起始液滴半徑之減小反而會增強;若此火焰其尖端為開口狀態,則其開口寬度會變窄。另當起始氣體自由流速增加時,所有尖端開口之噴霧火焰其開口寬度均會變寬。值得注意的,當噴霧量夠大且起始液滴半徑夠小時,對於Le>1之含燃料噴霧貧油本生燈火焰,其火焰型態會由本生燈火焰變成平面火焰,甚至再變成倒置圓錐形火焰;而對於Le>1之含燃料噴霧貧油倒置本生燈火焰,其火焰型態則會由倒置本生燈火焰變成平面火焰,甚至再變成本生燈火焰。當火焰型態為平面火焰,此時之噴霧量稱為臨界噴霧量;若於部分預蒸發模式下,則此時之起始液滴半徑稱為轉換起始液滴半徑。此臨界噴霧量會隨著起始氣體自由流速、轉換起始液滴半徑之增加、或起始氣體當量比之減少而增加。

    In the thesis, the structure of normal and inverted Bunsen flame tips under the influence of dilute, monodispersed inert (water) or fuel (methanol and ethanol) spray was theoretically studied using large activation energy asymptotics. Two spray modes: completely and partially prevaporized mode, were considered. The analyzed mixture types included: methane-air with water spray, propane-air with water spray, methanol-air with methanol spay and ethanol-air with ethanol spray. Six parameters: the amount of liquid-spray loading, initial droplet size, stretch, Lewis number (Le), upstream flow velocity and equivalence ratio, were used in the analysis. Stretch is negative for a normal Bunsen flame but positive for an inverted Bunsen flame. Stretch strengthens the Le>1 normal Bunsen flame and the Le<1 inverted Bunsen flame but weakens the Le<1 normal Bunsen flame and the Le>1 inverted Bunsen flame. For the Le>1 normal Bunsen flame and the Le<1 inverted Bunsen flame, closed-tip solutions are obtained. Conversely, for the Le<1 normal Bunsen flame and the Le>1 inverted Bunsen flame, tip opening, i.e., flame extinction occurred. The burning intensity of water-spray flames and rich fuel-spray flames becomes weaker for a larger amount of liquid loading or a smaller droplet size. However, the burning intensity of lean fuel-spray flames grows stronger for a larger amount of liquid loading or a smaller droplet size. For water-spray flames and rich fuel-spray flames (or lean fuel-spray flames), the open flame tip becomes wider (or narrower) when liquid loading increases or initial droplet size decreases; furthermore, all open flame tips widen when upstream flow velocity increases. Note that for lean fuel-spray normal (or inverted) Bunsen flame with Le>1, if liquid loading is large enough and droplet size is sufficiently small, the flame shape transforms from normal (or inverted) Bunsen through planar to inverted cone (or normal Bunsen) flame. The critical value of liquid-fuel loading, at which a planar flame exists rather than a normal (or an inverted) Bunsen flame, increases with increasing initial droplet size or upstream flow velocity, or decreasing equivalence ratio.

    總目錄................................................................... I 表目錄................................................................... III 圖目錄................................................................... IV 符號說明................................................................. VII 一、前言................................................................. 1 1-1 正拉伸流場....................................................... 1 1-2 負拉伸流場....................................................... 4 1-3 研究目的......................................................... 8 二、理論模式............................................................. 10 2-1 幾何描述......................................................... 10 2-2 基本假設......................................................... 11 2-3 控制方程式....................................................... 12 2-4 無因次化控制方程式............................................... 16 2-5 展開區理論推導與最後解........................................... 19 2-5-1 擴散區展開.................................................. 19 2-5-2 反應區展開.................................................. 22 2-5-3 最後解...................................................... 23 2-6 參考數值與估算模式............................................... 25 2-6-1 參考數值.................................................... 25 2-6-2 估算模式.................................................... 26 三、結果與討論........................................................... 29 3-1 含水噴霧火焰..................................................... 30 3-1-1 Le<1之貧油甲烷與富油丙烷火焰................................ 30 3-1-2 Le>1之富油甲烷與貧油丙烷火焰................................ 32 3-2 含燃料噴霧火焰................................................... 34 3-2-1 Le>1之貧油甲醇與貧油乙醇火焰................................ 34 3-2-2 Le<1之富油甲醇火焰.......................................... 38 3-2-3 Le>1之富油乙醇火焰.......................................... 39 四、結論................................................................. 41 五、參考文獻............................................................. 43 六、圖表................................................................. 49 表目錄 表1 本生燈噴霧火焰理論模式及參數分類表.............................. 49 圖目錄 圖1 本生燈噴霧火焰結構示意圖........................................ 50 圖2 理論推導流程圖.................................................. 51 圖3 方程式(56)在r=0下之相平面圖(於特徵曲線中,箭頭方向代表R增加).... 52 圖4 含水噴霧之貧油甲烷與富油丙烷本生燈火焰,在不同噴霧量及起始氣體自 由流速下,其火焰尖端結構變化圖.................................. 53 圖5 含水噴霧之貧油甲烷與富油丙烷本生燈火焰,在不同起始氣體當量比下, 其火焰尖端結構變化圖............................................ 54 圖6 含水噴霧之貧油甲烷與富油丙烷本生燈火焰,在不同起始液滴半徑下,其 火焰尖端結構變化圖.............................................. 55 圖7 含水噴霧之貧油甲烷與富油丙烷倒置本生燈火焰,在不同噴霧量及起始氣 體自由流速下,其火焰尖端結構變化圖.............................. 56 圖8 含水噴霧之貧油甲烷與富油丙烷倒置本生燈火焰,在不同起始氣體當量比 下,其火焰尖端結構變化圖........................................ 57 圖9 含水噴霧之貧油甲烷與富油丙烷倒置本生燈火焰,在不同起始液滴半徑下 ,其火焰尖端結構變化圖.......................................... 58 圖10 含水噴霧之富油甲烷與貧油丙烷本生燈火焰,在不同噴霧量及起始氣體自 由流速下,其火焰尖端結構變化圖.................................. 59 圖11 含水噴霧之富油甲烷與貧油丙烷本生燈火焰,在不同起始氣體當量比下, 其火焰尖端結構變化圖............................................ 60 圖12 含水噴霧之富油甲烷與貧油丙烷本生燈火焰,在不同起始液滴半徑下,其 火焰尖端結構變化圖.............................................. 61 圖13 含水噴霧之富油甲烷與貧油丙烷倒置本生燈火焰,在不同噴霧量及起始氣 體自由流速下,其火焰尖端結構變化圖.............................. 62 圖14 含水噴霧之富油甲烷與貧油丙烷倒置本生燈火焰,在不同起始氣體當量比 下,其火焰尖端結構變化圖........................................ 63 圖15 含水噴霧之富油甲烷與貧油丙烷倒置本生燈火焰,在不同起始液滴半徑下, 其火焰尖端結構變化圖............................................ 64 圖16 含甲醇噴霧之貧油甲醇(a)本生燈火焰 (b)倒置本生燈火焰,在不同噴霧量 及起始氣體自由流速下,其火焰尖端結構變化圖...................... 65 圖17 含甲醇噴霧之貧油甲醇本生燈火焰,在噴霧量(a)r=0.04(b)r=0.06,不同起 始液滴半徑下,其火焰尖端結構變化圖.............................. 66 圖18 含甲醇噴霧之貧油甲醇倒置本生燈火焰,在噴霧量(a)r=0.04(b)r=0.06,不 同起始液滴半徑下,其火焰尖端結構變化圖.......................... 67 圖19 含甲醇噴霧之貧油甲醇本生燈及倒置本生燈火焰,其臨界噴霧量與(a)起始氣 體自由流速(b)起始氣體當量比(c)轉換起始液滴半徑之關係圖.......... 68 圖20 含乙醇噴霧之貧油乙醇(a)本生燈火焰 (b)倒置本生燈火焰,在不同噴霧量及 起始氣體自由流速下,其火焰尖端結構變化圖........................ 69 圖21 含乙醇噴霧之貧油乙醇本生燈火焰,在噴霧量(a)r=0.020(b)r=0.042,不同 起始液滴半徑下,其火焰尖端結構變化圖............................ 70 圖22 含乙醇噴霧之貧油乙醇倒置本生燈火焰,在噴霧量(a)r=0.020(b)r=0.042, 不同起始液滴半徑下,其火焰尖端結構變化圖........................ 71 圖23 含乙醇噴霧之貧油乙醇本生燈及倒置本生燈火焰,其臨界噴霧量與(a)起始氣 體自由流速(b)起始氣體當量比(c)轉換起始液滴半徑之關係圖.......... 72 圖24 含甲醇噴霧之富油甲醇本生燈火焰,在不同(a)噴霧量、起始氣體自由流速及 (b)起始液滴半徑下,其火焰尖端結構變化圖......................... 73 圖25 含甲醇噴霧之富油甲醇倒置本生燈火焰,在不同(a)噴霧量、起始氣體自由流 速及(b)起始液滴半徑下,其火焰尖端結構變化圖..................... 74 圖26 含乙醇噴霧之富油乙醇本生燈火焰,在不同(a)噴霧量、起始氣體自由流速及 (b)起始液滴半徑下,其火焰尖端結構變化圖......................... 75 圖27 含乙醇噴霧之富油乙醇倒置本生燈火焰,在不同(a)噴霧量、起始氣體自由流 速及(b)起始液滴半徑下,其火焰尖端結構變化圖..................... 76

    1. Liu, C.C., and Lin, T.H.,“The Interaction Between External and Internal Heat Losses on the Flame Extinction of Dilute Sprays,” Combust. Flame, Vol. 85, pp. 468-478, 1991.

    2. Liu, C.C., and Lin, T.H.,“The Influence of Upstream Prevaporization on Flame Extinction of One-Dimensional Dilute Sprays,” IUTAM Symposium on Aerothermodynamics in Combustors, June 3-5, pp. 197-211, 1991.

    3. Hou, S.S., Liu, C.C., and Lin, T.H.,“The Influence of External Heat Transfer on Flame Extinction of Dilute Sprays,” Int. J. Heat Mass Transfer, Vol. 36, No. 7, pp. 1867-1874, 1993.

    4. Hou, S.S., and Lin, T.H.,“A Theory on Excess Enthalpy Spray Flame,” Atomization and Sprays, Vol. 9, pp. 355-369, 1999.

    5. Hou, S.S., and Tseng, C.H.,“The Influence of Downstream External Heat Loss on Extinction of Dilute Spray Flames,” International Communications in Heat and Mass Transfer, Vol. 26, No. 5, pp. 705-715, 1999.

    6. Hou, S.S.,“The Interaction between Upstream and Downstream External Heat Transfers on the Burning and Extinction of Dilute Spray Flames,” JSME International Journal, Series B, Vol. 42, No. 4, pp. 691-698, 1999.

    7. Liu, C.C., Lin, T.H., and Tien, J.H.,“Extinction Theory of Stretched Premixed Flames by Inert Sprays,” Combust. Sci. Tech., Vol. 91, pp. 309-327, 1993.

    8. Hou, S.S., and Lin, T.H.,“Extinction of Stretched Spray Flames with Nonunity Lewis Numbers in a Stagnation-Point Flow,” Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, pp. 2009-2015, 1998.

    9. Hou, S.S., and Lin, T.H.,“Effects of Internal Heat Transfer and Preferential Diffusion on Stretched Spray Flames,” Int. J. Heat Mass Transfer, Vol. 44, No. 23, pp. 4391-4400, 2001.

    10. Karlovitz, B., Denniston, D.W., Jr., Knapschaefer, D.H., and Wells, F.E., “Studies on Turbulent Flames,” Fourth Symposium (International) on Combustion, The Combustion Institute, pp. 613-620, 1953.

    11. Chen, Z.H., Lin, T.H., and Sohrab, S.H.,“Combustion of Liquid Fuel Sprays in Stagnation-Point Flow,” Combust. Sci. Tech., Vol. 60, pp. 63-77, 1988.

    12. Shu, C.J., Chen, R.H., Liu, C.C., and Lin, T.H.,“Flow and Flame Characteristics of Stagnation-Point Premixed Flames Influenced by Water Sprays,” International Symposium on the Mechanics and Combustion of Droplets and Sprays, International Union of Theoretical and Applied Mechanics (IUTAM), Invited paper, Dec. 6-10, Tainan, Taiwan, ROC, pp. 427-437, 1994.

    13. Lewis, B., and von Elbe, G., Combustion, Flames and Explosions of Gases, Third Edition, Academic Press, New Work, pp. 284-287, 1987.

    14. Edmondson, H., and Heap, M.P.,“Blowoff of Inverted Flames,” Combust. Flame, Vol. 14, pp. 191-194, 1970.

    15. Edmondson, H., and Heap, M.P.,“The Correlation of Burning Velocity and Blowoff Data by the Flame Stretch Concept,” Combust. Flame, Vol. 15, pp. 179-187, 1970.

    16. Asato, K., Kawamura, T., and Ban, T.,“Effects of Curvature on Extinction of Premixed Flames Stabilized in Stagnation Flow,” Twenty-Second Symposium (International) on Combustion, The Combustion Institute, pp. 1509-1515, 1988.

    17. Mikolaitis, D.W.,“The Interaction of Flame Curvature and Stretch, Part 1: The Concave Premixed Flame,” Combust. Flame, Vol. 57, pp. 25-31, 1984.

    18. Sung, C.J., and Law, C.K.,“On Adiabatic Stabilization of Inverted Flames,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, pp. 205-212, 1992.

    19. Lewis, B., and von Elbe, G., Combustion, Flames and Explosions of Gases, Third Edition, Academic Press, New Work, pp. 274-301, 1987.

    20. Andersen, J.W., and Fein, R.S.,“Measurements of Normal Burning Velocities and Flame Temperature of Bunsen Flames,” The Journal of Chemical Physics, Vol. 17, No. 12, pp. 1268-1273, 1949.

    21. Law, C.K., Ishizuka, S., and Cho, P.,“On the Opening of Premixed Bunsen Flame Tips,” Combust. Sci. Tech., Vol. 28, pp. 89-96, 1982.

    22. Mizomoto, M., Asaka, Y., and Ikai, S.,“Effects of Preferential Diffusion on the Burning Intensity of Curved Flames,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 1933-1939, 1984.

    23. Wagner, T.C.,“Bunsen Flame Hydrodynamics,” Combust. Flame, Vol. 59, pp. 267-272, 1985.

    24. Law, C.K., Cho, P., Mizomoto, M., and Yoshida, H.,“Flame Curvature and Prefeferential Diffusion in the Burning Intensity of Bunsen Flames,” Twenty-First Symposium (International) on Combustion, The Combustion Institute, pp. 1803-1809, 1986.

    25. Mizomoto, M., and Yoshida, H.,“Effects of Lewis Number on the Burning Intensity of Burning Flames,” Combust. Flame, Vol. 70, pp. 47-60, 1987.

    26. Sheu, W.J., Sohrab, S.H., and Sivashinsky, G.I.,“Effect of Rotation on Bunsen Flame,” Combust. Flame, Vol. 79, pp. 190-198, 1990.

    27. Sivashinsky, G.I.,“The Diffusion Stratification Effect in Bunsen Flames,” Journal of Heat Transfer, Vol. 96, pp. 530-535, 1974.

    28. Sivashinsky, G.I.,“Structure of Bunsen Flames,” The Journal of Chemical Physics, Vol. 62, No. 2, pp. 638-643, 1975.

    29. Buckmaster, J.,“A Mathematical Description of Open and Closed Flame Tips,” Combust. Sci. Tech., Vol. 20, pp. 33-40, 1979.

    30. Mikolaitis, D.W.,“The Interaction of Flame Curvature and Stretch, Part 2: The Convex Premixed Flame,” Combust. Flame, Vol. 58, pp. 23-29, 1984.

    31. Sung, C.J., Yu, K.M., and Law, C.K.,“On the Geometry and Burning Intensity of Bunsen Flames,” Combust. Sci. Tech., Vol. 100, pp. 245-270, 1994.

    32.Law, C.K., and Chung, S.H.,“An Ignition Criterion for Droplets in Sprays,” Combust. Sci. Tech., Vol. 22, pp. 17-26, 1980.

    33. Lin, T.H., Law, C.K., and Chung, S.H.,“Theory of Laminar Flame Propagation in Off-Stoichiometric Dilute Sprays,” Int. J. Heat Mass Transfer, Vol. 31, pp. 1023-1034, 1988.

    34. Williams, F.A., Combustion Theory, Second Edition, Benjamin Cummings, Menlo Park, CA, pp. 446-484, 1985.

    35. 李宗義,計算機數值應用法,復文書局,民國75年。

    36. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, Third Edition, McGraw Hill, New York, pp. 544-566, 1977.

    37. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, Third Edition, McGraw Hill, New York, pp. 226-257, 1977.

    38. Wark, K., Thermodynamics, Fourth Edition, McGraw Hill, New York, pp. 398-404, 1983.

    39. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, Third Edition, McGraw Hill, New York, pp. 470-516, 1977.

    40. Rosner, D.E., Transport Processes in Chemically Reacting Flow Systems, Butterworth Publishers, Stoneham, MA, pp. 113-116, 1986.

    下載圖示 校內:2008-06-20公開
    校外:2013-06-20公開
    QR CODE