研究生: |
戴佑全 Dai, You-cyuan |
---|---|
論文名稱: |
介電潤濕元件接觸角飽和現象之探討 A Study on Saturated Contact Angle in Electrowetting-on-Dielectric (EWOD) Device |
指導教授: |
楊瑞珍
Yang, Ruey-jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 聚二甲基矽氧烷 、介電潤濕 、飽和 、微液滴 、接觸角 |
外文關鍵詞: | Electrowetting-on-dielectric (EWOD), Micro-droplet, Saturation, Polydimethysiloxane (PDMS), Contact angle |
相關次數: | 點閱:76 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將以實驗及理論兩部份來探討微液滴在介電潤濕(Electrowetting-on-dielectric , EWOD)此操作條件下其接觸角飽和之行為。本研究中之介電潤濕晶片製作之步驟為:先將利用熱蒸鍍系統在青板玻璃(Soda-lime glass)表面鍍上鋁及鉻兩種金屬成為一電極層,再利用旋轉塗佈機塗佈高分子材料聚二甲基矽氧烷(polydimethysiloxane , PDMS)於電極層上,成為介電潤濕晶片之介電層及疏水層。本研究將探討五種介電層及疏水層厚度之介電潤濕行為,其厚度分別為17 μm、31 μm、68 μm、113 μm及234 μm。而在介電潤濕現象之理論分析方面,將包含兩部份:第一部份以最小能量之觀點(介面位能、重力位能及電能)進行分析,第二部份則以等效電路迴路分析探討微液滴的接觸角與提供電位兩者之間的關係。在本研究之實驗結果可知在不同介電層厚度其接觸角飽和之角度皆近似於 。 在介電潤濕現象下,楊-李普曼(Young-Lippmann)方程式已無法描述微液滴接觸角飽和與所施加電壓之行為,本研究推測造成接觸角飽和行為之原因為高分子材料聚二甲基矽氧烷發生介電潰堤現象。當提供的電場強度超過高分子材料聚二甲基矽氧烷之介電強度,此時高分子材料之介電性質將會改變,而造成高分子材料聚二甲基矽氧烷將產生導體性質而造成電流溢漏,故本研究之實驗結果中發現當提供之電位達到臨界電壓時,將產生電流溢漏之現象,並且定義出此時臨界電場強度為高分子材料聚二甲基矽氧烷之介電強度,介電強度也將隨著介電層厚度增加而降低,此趨勢與介電材料相關文獻中相符合。
This study presents the experimental and theoretical investigations into the issue of the micro-droplet saturated contact angle in electrowetting-on-dielectric (EWOD). The EWOD chips were fabricated by the following processes. First, the aluminum/chromium electrodes were plated on a soda-lime glass using the thermal evaporation. Then, the polydimethysiloxane (PDMS) was adopted to form the dielectric/hydrophobic layer over the electrode using the spinning coater. There are five different thicknesses of dielectric/hydrophobic layer (17 μm, 31 μm, 68 μm, 113 μm and 234 μm) were fabricated to study the EWOD. In theoretical analysis, the principle of minimum energy (e.g. interfacial potential, gravitational potential and electrical energies) and the electrical circuit analysis were both adopted to investigate the relationship between the contact angle of micro-droplet and the applied voltage. The experimental results showed that the saturated contact angles of micro-droplet for the different thicknesses of dielectric/hydrophobic layer are all approximately 57°. The Young-Lippmann equation fails to describe why the saturated contact angle of micro-droplet occurs in EWOD. We infer that the dielectric breakdown may be a possible reason to interpret this physical phenomenon. When the externally applied electric field strength is larger than the dielectric strength of the material (i.e. PDMS), the dielectric or electrical properties of the material will break down. The material becomes a partial conductor and results in the current leakage. In our experimental measurements, we find that the current leakage occurs at the critical applied voltage of the saturated contact angle. Further, we identify that the critical electric field strength as the dielectric strength of the material. We find that the dielectric strength decreases as the thickness of dielectric/hydrophobic layer is increased. This trend is consistent with the dielectric strength measurements of the dielectric materials in literatures.
Berge B (1993) Electrocapillarity and wetting of insulator films by water. Comptes Rendus De L Academie Des Sciences Serie II 317:157-163
Berthier J, Clementz Ph, Raccurt O, Jary D, Claustre P, Peponnet C, Fouillet Y (2006) Computer aided design of an EWOD microdevice. Sensors and Actuators A 127:283-294
Brochard F (1989) Motions of droplets on solid surface induced by chemical or thermal gradients. Langmuir 5:432-438
Cahill BP, Giannitsis AT, Land R, Gastrock G, Pliquett U, Nacke T, Min M, Beckmann D (2008) Optimization of electrowetting electrodes: analysis of the leakage current characteristics of various dielectric layers. 11th International Biennial Baltic Electronics Conference (Tallinn, Estonia)
Chang CC (2007) Electrokinetic / pressure-driven flows in microfluidic channels: interfacial electrokinetic effect on parallel flow of two-immiscible-fluid, chaotic mixing, and flow focusing. NCKU (Tainan , Taiwan)
Cheng YC (2005) Digital microfluidic chips with low operation voltages for polymerase chain reaction applications. NCKU (Tainan , Taiwan)
Cheng DK (1989) Field and Wave Electromagnetics 2nd (Addison-Wesley publishing company)
Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems 12:70-80
Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334-336
Cygan S, Laghari JR (1987) Dependence of the electric strength on thickness area and volume of polypropylene. IEEE Transaction on Electrical Insulation 6:835-837
Dai W, Zhao YP (2007) The nonlinear phenomena of thin polydimethylsiloxane (PDMS) films in electrowetting. International Journal of Nonlinear Sciences and Numerical Simulation 8:519-526
Deanin RD (1972) Polymer structure properties and applications (Boston: Cahners Publishing Company)
Dos Santos DF, Ondarçuhu T (1995) Free-running droplets. Physical Review Letters 75(16):2972-2975
Drygiannakis AI, Papathanasiou AG, Boudouvis AG (2009) On the connection between dielectric breakdown strength, trapping of charge, and contact angle saturation in electrowetting. Langmuir 25:147-152
Dussan V EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annual Review of Fluid Mechanics 11:371-400
Feng JT, Zhao YP (2008) Experimental observation of electrical instability of droplets on dielectric layer. Journal of Physics D: Applied Physics 41:052004(1-5)
Feynman R (1992) There is plenty of room at the bottom. Journal of Microelectromechanical Systems 1:60-66
Horiuchi K, Dutta P (2006) Electrokinetic flow control in microfluidic chips using a field-effect transistor. Lab on a Chip 6:714-723
Hossain MM (1993) Effect of humidity on the breakdown strength and diffusion characteristics of polymer film. Bulletin of Materials Science 16:699-707
Hunter RJ (1987) Foundations of Colloid Science: Volume 1 (New York: Oxford University Press)
Ichimura K, Oh AK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288:1624-1626
Lee SW, Laibinis PE (2000) Directed movement of liquids on patterned surfaces using noncovalent molecular adsorption. Journal of the American Chemical Society 122:5395-5396
Lin JL, Lee GB, Chang YH, Lien KY (2006) Model description of contact angles in electrowetting on dielectric layers. Langmuir 22:484-489
Lichtenecker K (1926) Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper. Physikalische Zeitschrift 27:15–158
Lippmann G (1875) Relations entre les phénomènes électriõues et capillaries. Annales des Chimie et des Physique 5:494-549
Moon H, Cho SK, Garrell RL, Kim CJ (2002) Low voltage electrowetting on dielectric. Journal of Applied Physics 92(7):4080-4087
Papathanasiou AG, Boudouvis A (2005) Manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Applied
Physics Letters 86:164102(1-3)
Papathanasiou AG, Papaioannou AT, Boudouvis AG (2008) Illuminating the connection between contact angle saturation and dielectric breakdown in electrowetting through leakage current measurement. Journal of Applied Physics 103:034901(1-4)
Peykov V, Quinn A, Ralston J (2000) Electrowetting: a model for contact-angle saturation. Colloid and Polymer Science 278:789-793
Probstein RF (1994) Physicochemical Hydrodynamics: An Introduction (New York: John Wiely & Sons)
Quinn A, Sedev R, Ralston (2005) Contact angle saturation in electrowetting. The Journal of Physical Chemistry B 109:6268-6275
Rafael T (2004) Line energy and the relation between advancing receding and young contact angles. Langmuir 20:7659-7664
Shapiro B, Moon H, Garrell RL, Kim CJ (2003) Equilibrium behavior of sessile drops under surface tension applied external fields and material variations. Journal of Applied Physics 93:5794-5811
Squires TM, Quake SR (2005) Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics 77:977-1026
Stokes RJ, Evans DF (1996) Fundamentals of Interfacial Engineering (New York: Wiley-VCH)
Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solution on poly(ethylene terephthalate) insulating films. Polymer 37:2465-2470
Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15:6616-6620
Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induce amphiphilic surfaces. Nature 388:431-432
Welters WJJ, Fokkink LGJ (1998) Fast electrically switchable capillary effects. Langmuir 14:1535-1538
Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. Journal of Fluid Mechanics 6:350-356
Young T (1805) An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 95:65-87
Zhou H, Shi FG, Zhao B, Yota J (2005) Temperature accelerated dielectric breakdown of PECVD low-k carbon doped silicon dioxide dielectric thin films. Applied Physics A : Materials Science & Processing 81:767-771