| 研究生: |
林睿言 Lin, Jui-Yen |
|---|---|
| 論文名稱: |
金屬擴張網應用於室內吸音建材之產品開發 Development of Expanded Metal Mesh Applied to Indoor Sound-Absorbing Material |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 金屬擴張網 、共振吸音結構 、高性能吸音建材 、室內聲學 |
| 外文關鍵詞: | Expanded Metal Mesh, Sound Absorption of Resonance, High-Performance Sound Absorption Material, Room Acoustic |
| 相關次數: | 點閱:127 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
室內裝修建材之吸音能力為影響室內迴響時間的重要因子,吸音材料可提供降低室內環境噪音及提升室內聲學品質,以創造舒適的室內聲環境,常見手法為多孔質吸音材料、穿孔板共振吸音構造及板共振吸音構造。回顧國內外相關吸音構造之研究,多為單一材料及複合式構造,如穿孔板作為表面材料搭配多孔質填充材或搭配蜂巢板等。然而,文獻指出多孔質填充材在未包覆狀況下,因材料劣化剝落產生粉塵並經由空氣傳播影響使用者身體健康。
建築材料中,金屬材料具有可塑性高、耐候性佳、剛性高及回收再製等優點,故相關產品常見於建築外殼、屋頂等室外環境,較少大量應用於室內。微孔板為常見之金屬裝修材料,除了具備以上基本特性外,更透過本身細小的孔隙達到高吸音能力,但製造工序複雜及成本較高。因此,本研究聚焦於具有孔隙特性之金屬擴張網,進行室內吸音建材之產品開發。
本研究主要分為二部分,第一部分為多孔質搭配穿孔板共振結構,從單板吸音構造、盒狀吸音構造到摺板吸音構造,共有三個實驗室量測階段,利用每階段之結果進行下階段之試體設計,討論構造的尺寸、形狀及空氣層之搭配,統整最佳之摺板吸音構造。第二部分為薄膜搭配穿孔板之共振吸音結構,以構造尺寸及空氣層作為變因進行材料設計,討論複合式材料吸音構造之吸音性能,並將最佳之構造組合裝置於實場空間,進行材料裝設前後之室內聲學實測,依各項聲學指標之比較與分析。
由單板金屬擴張網之研究結果發現,板材本身對於吸音性能之影響,孔中心距離比起板厚影響更大,且需填充材料以達到高吸音性能。雙層的盒狀構造於不填充多孔材料且有空氣層之條件下,α_w達0.70 ~ 0.80。考量材料結構,發展出摺板構造且不填充多孔材料時,α_w可達0.65~ 0.85。顯示金屬擴張網能有效運用本身的孔隙及雙層板構造的優勢,達到中頻以上的高吸音性能。同時本研究針對吸收低頻進行金屬擴張網與油畫布之板膜複合共振吸音構造研究,結果顯示α_s於100 Hz ~ 250 Hz達0.6以上,更於125 Hz達0.8。
最後,摺板構造與板膜複合共振吸音構造於實場驗證之結果顯示,鋪設47.8 %天花板面積之摺板構造可使辦公室迴響時間下降約0.25 s ~ 0.46 s,且有效提升清晰度;裝設1.6 %總表面積之板模複合構造可使演講空間之迴響時間於125 Hz及250 Hz下降0.27 s及0.16 s,有效降低低頻噪音。經由材料設計、吸音係數量測至實場驗證,顯示金屬擴張網能搭配不同材料、不同構造展現全然不同之吸音特性,更能因應不同空間之使用需求,有效提供及改善空間所需之聲學環境。
The sound-absorbing material concerns, which is an important factor control, the reverberation time (RT), improves room acoustic and comfort environment. The porous material and porous with the board of multi-layer structure, which commonly used to sound-absorbing material. In the market, sound-absorbing building materials used porous sound-absorbing materials and a composite structure of porous materials with panels as a common method. Uncovered porous sound-absorbing materials, which exposed and spread into the air, are affecting body health. Therefore, using materials covered surface for less effusion problem, which metal material become building material and applied to indoor renovation, in the recent year.
Among building materials, metal materials have the advantages of high plasticity, good weather resistance, high rigidity, and recycling. Micro-Perforated plate (MPP) is a common metal interior material. In addition to the above basic characteristics, MPP achieves high sound absorption via lots of small pores, but the manufacturing process is complicated and high cost. Therefore, this research focuses on the development of indoor sound-absorbing building materials via expanded metal mesh (EMM), which low cost.
This research proposes two sound-absorption structure for target different frequency via laboratory measurement, which developed expanded metal mesh with folding structure (EMMFS) and panel membrane resonance absorber (PMRA). The result of measurement is discussed using CNS 15218 (ISO 11654) to evaluate the α_w in 82 test specimens.
The results show that the hole center distance has a greater influence than the plate thickness, which the box structure with air layer, then under the condition without porous material, the α_w is 0.70 to 0.80. Considering the specimen structure, the folded structure without porous material is developed, which α_w is 0.65 to 0.85. It shows EMM has the potential to achieve high-performance sound absorption, which above the intermediate frequency. Then, its composite resonance sound absorption structure of EMM and canvas is carried out, which α_w is above 0.6 at 100 Hz to 250 Hz, and 125 Hz is reach 0.8.
Furthermore, using the folding structure specimen could reduce the RT from 1.05 s to 0.56 s, which is layout 47.8% of the ceiling in the office. Also, installed 1.6% of the total surface of speech room, the RT reduce to 1.47 at 125 Hz, 1.37 s at 250Hz via PMRA. This demonstrates that using EMMFS and PMRA could reduce RT and rise the room acoustic.
(一)中文文獻
1. 中華民國國家標準(2008)。CNS 15218 A3412聲學-建築物使用之吸音材-吸音量評定。台北市:經濟部標準檢驗局。
2. 中華民國國家標準(2017)。CNS15967 A2311吸音材料。台北市:經濟部標準檢驗局。
3. 王榮進(2020)。綠建材解說與評估手冊。新北市:內政部建築研究所。
4. 林建勳(2017)。金屬擴張網應用於陽台綠化之系統開發。國立成功大學建築研究所碩士論文,台南市。
5. 馬大猷(1975)。微穿孔板吸音結構的理論和設計。中國科學,1,38-50。
6. 馬大猷(1988)。微穿孔板結構的設計。聲學學報,3,174-180。
7. 楊志鴻(2018)。金屬擴張網應用於建築立面之採光與耗能評估-以台南地區辦公建築為例。國立成功大學建築研究所碩士論文,台南市。
8. 葉民權(1979)。打孔粒片板及音特性之研究。國立臺灣大學森林研究所碩士論文,台北市。
9. 劉鎧華(2014)。金屬板構造吸音率預測模式之研究。國立成功大學建築研究所博士論文,台南市。
10. 盧博堅,劉嘉俊(2011)。噪音控制與防治。台中市:滄海圖書資訊股份有限公司。
(二)英文文獻
1. Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Toxicological profile for synthetic vitreous fibers.
2. Alimohammadi, I., Sandrock, S., & Gohari, M. R. (2013). The effects of low frequency noise on mental performance and annoyance. Environmental monitoring and assessment, 185, 7043-7051.
3. Arenas, J. P., Rebolledo, J., Rey, R. D., & Alba. J. (2014). Sound absorption properties of unbleached cellulose loose-fill insulation material. Bioresources, 9 (4). 6227-6240.
4. Abbasi, A. M., Motamedzade, M., Aliabadi, M., Golmohammadi, R., & Tapak, L. (2018). Study of the physiological and mental health effects caused by exposure to low-frequency noise in a simulated control room. Building Acoustics, 25(3), 233-248.
5. ASHRAE (COR). (2019). 2019 ASHRAE Handbook: HVAC Applications. New York: Amer Society of Heating.
6. Bolt, R. H. (1947). On the design of perforated facing acoustic materials. Acoustical Society of America, 19(5), 917-921.
7. Beranek, L. L. (1962). Music, Acoustics and Architecture (1st ed.). New York: John Wiley & Sons, Inc.
8. Barron, M., Arya, C., & Wright, P. J. (1993). Auditorium Acoustics and Architectural Design. UK: Taylor & Francis Group.
9. Beranek, L. L. (1996). Concert and Opera Halls: How They Sound. (1st ed.). New York: Acoustical Society of America.
10. Bartolini, R., Filippozzi, S., Princi, E., Schenone, C., & Vicini, S. (2010). Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Applied Clay Science, 48(3), 460-465.
11. Bucciarelli, F., Fierro, G. M., & Meo, M. (2019). A multilayer microperforated panel prototype for broadband sound absorption at low frequencies. Applied Acoustics, 146, 134-144.
12. Caniato, M., & Bettarello, F. (2013). The impact of acoustics and energy efficiency protocols on comfort in the building industry. The Open Civil Engineering Journal, 3(02), 40-45.
13. Caniato, M., Bettarello, F., Schmid, C., & Fausti, P. (2016). Assessment criterion for indoor noise disturbance in the presence of low frequency sources. Applied Acoustics, 113, 22-33.
14. Čudina, M., Prezelj, J., & Pušlar-Čudina, M. (2016). The impact of paintings hung on lecture room walls on the speech intelligibility and perception of background noise. Indoor and Built Environment, 25(4), 659-673.
15. Cobo, P. & Simón, F. (2019). Multiple-Layer Microperforated Panels as Sound Absorbers in Buildings: A Review. Buildings, 9(2), 53.
16. Doelle, L. L. (1972). Environmental Acoustics. New York: McGraw Hill Education.
17. Davern, W. A. (1977). Perforated facings backed with porous materials as sound absorbers—An experimental study. Applied Acoustics, 10(2), 85-112.
18. Duan, C., Cui, C., Xu, X., & Liu, P. (2012). Sound absorption characteristics of a high-temperature sintering porous ceramic material. Applied Acoustics, 73(9), 865-871.
19. Dupont, T., LeClaire, P., Panneton, R., & Umnova, O. (2018). A Microstructure Material Design for Low Frequency Sound Absorption. Applied Acoustics, 136, 86-93.
20. Ehmer, R. H. (1959). Masking Patterns of Tones. Journal of the Acoustical Society of America, 31(8), 1115-1120.
21. Falourd, X., Lissek, H., & René, P. J. (2009, 16th). Active low-frequency modal noise cancellation for room acoustics: an experimental study. International Congress on Sound and Vibration (ICSV), Kraków, Poland.
22. Frontczak, M., & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922-937.
23. Fuchs H.V. & Lamprecht J. (2013). Covered broadband absorbers improving functional acoustics in communication rooms. Applied Acoustic, 74(1), 18-27.
24. Goldsworthy, R. L., & Greenberg, J. E. (2004). Analysis of speech-based speech transmission index methods with implications for nonlinear operations. The Journal of the Acoustical Society of America, 116(6), 3679-3689.
25. Gai, X. L., Li, X. H., & Zhang, B. (2016). Experimental study on sound absorption performance of microperforated panel with membrane cell. Applied Acoustics, 110, 241-247.
26. Hodgson, M. (1999). Experimental investigation of the acoustical characteristics of university classrooms. Acoustical Society of America, 106, 1810.
27. Ingard, U. & Bolt, R. H. (1951). Absorption characteristics of acoustic material with perforated facing. Acoustical Society of America, 23, 533-540.
28. IEC 60268-16 (2011). Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index. Geneva, Switzerland: International Electrotechnical Commission.
29. Jung, S. S., Kim, Y. T., Lee, D. H., Kim, H. C., Cho, S. I., & Lee, J. K. (2007). Sound absorption of micro-perforated panel. Korean Physical Society, 50(4), 1044-1051.
30. Jing, Y., & Xiang, N. (2007). A modified diffusion equation for room-acoustic predication. The Journal of the Acoustical Society of America, 121(6), 3284-3287.
31. Knudsen, V. O., & Harris, C. M. (1950). Acoustical Design in Architecture (1st ed.). New York: John Wiley & Sons, Inc.
32. Kuttruff, H. (1979). Room Acoustics (2ed ed.). Barking: Applied Science Publishers.
33. Krügera, E. L., & Zanninb. P. H. T. (2004). Acoustic, thermal and luminous comfort in classrooms. Building and Environment, 39 (9), 1055-1063.
34. Kaarlela-Tuomaala, A., Helenius. R., Keskinen, E., & Hongisto, V. (2009). Effects of acoustic environment on work in private office rooms and open-plan offices – longitudinal study during relocation. Ergonomics, 52(11), 1423-1444.
35. Klatte, M. Hellbrück, J. Seidel, J. Leistner, P. (2010). Effects of Classroom Acoustics on Performance and Well-Being in Elementary School Children: A Field Study. SAGE, 42(5), 659-692.
36. Kim, Y. H., Kim, J. H. & Jeon, J. Y. (2011). Scale Model Investigations of Diffuser Application Strategies for Acoustical Design of Performance Venues. Acta Acoustia United with Acoustia, 97(5), 791–799.
37. Kłosak, A. K. (2020). Design, simulations and experimental research in the process of development of sound absorbing perforated ceiling tile. Applied Acoustics, 161, 1-13.
38. Leventhall, H. G. (2004). Low frequency noise and annoyance. Noise Health, 6, 59-72.
39. Liu, K. H., Lai, R. P., & Kuo, C. H. (2013). A Study on the Sound-Absorbing Characteristics of Multi Air Layer, Applied Mechanics and Materials, 420, 92-98.
40. Liu, Z., Zhan, J., Fard, M., & Davy, J. L. (2017). Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Applied Acoustics, 121, 25-32.
41. Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibers. Applied Acoustics, 130, 107-114.
42. Liu, C.R., Wu, J. H., Chen, X., & Ma, F. (2019). A thin low-frequency broadband metasurface with multi-order sound absorption. Journal of Physics D: Applied Physics, 52, 105302.
43. Michel Rettinger, M. A. (1968). Acoustics: room design and noise control. New York: Chemical Publishing Co., Inc.
44. McGarrigle, R., Kevin, J. M., Dawes, P., Andrew, J. S., David, R. M., Johanna, G. B., & Amitay, S. (2014). Listening effort and fatigue: What exactly are we measuring? A British Society of Audiology Cognition in Hearing Special Interest Group ‘ white paper ’. International Journal of Audiology, 1-13.
45. Nannipieri, E., & Secchi. S. (2013). The evolution of acoustic comfort in Italian houses. Building Acoustics, 19 (2), 99-118.
46. Picaut, J., Simon, L., & Polack, J. D. (1997). A mathematical model of diffuse sound field based on a diffusion equation. ACTA Acustica united with Acustica, 83(4), 614-621.
47. Passero, C. R. M., & Zannin, P. H. T. (2012). Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control. Applied Ergonomics, 43(6), 1066-1071.
48. Peng, F. (2018). Sound absorption of a porous material with a perforated facing at high sound pressure levels. Sound and Vibrations, 425, 1-20.
49. Ryu, J., Song, H., & Kim, Y. (2018). Effect of the suspended ceiling with low-frequency resonant panel absorber on heavyweight floor impact sound in the building. Building and Environment, 139, 1-7.
50. Ricciardia, P., & Buratti, C. (2018). Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment, 127, 23-36.
51. Rachel, L. M., Roy, K. S. (2020). Open plan office space? If you're going to do it, do it right: A fourteen-month longitudinal case study. Applied Ergonomics, 82, 102933.
52. Sabine, P. E., Ramer L. G. (1948). Absorption-Frequency Characteristics of Plywood Panels. Acoustical Society of America, 20, 917-921.
53. Sakagami, K., Yamashita, I., Yairi, M., & Morimoto, M. (2011). Effect of honeycomb on the absorption characteristics of double-leaf microperforated panel (MPP) space sound absorbers. Noise Control Engineering Journal, 59(4), 363.
54. Secchi, S., Vannucchi, I., Farotto, E., Nannipieri, E., Cellai, G., & Stoppioni, E. (2012, July). Ideazione e definizione di soluzioni a base cellulosica per l’isolamento acustico ed il fonoassorbimento negli edifice. Proceedings of Italian Association of Acoustics, Rome.
55. Secchi, S., Asdrubali, F., Cellai, G., Nannipieri, E., Rotili, A., & Vannucchi, I. (2016). Experimental and environmental analysis of new sound-absorbing and insulating elements in recycled cardboard. Journal of Building Engineering, 5, 1-12.
56. Takahashi, D. (1997). A new method for predicting the sound absorption of perforated absorber systems. Applied Acoustics, 51(1), 71-84.
57. Toyoda, M., Sakagami, K., Takahashi, D., & Morimoto, M. (2011). Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers. Applied Acoustics, 72(12), 943-948.
58. Tang, Y., Ren, S., Meng, H., Xin, F., Huang, L., Chen, T., Zhang, C., & Lu, T. J. (2017). Hybrid Acoustic Metamaterial as Super Absorber for Broadband Low-Frequency Sound. Scientific Reports, 7, 43340.
59. Waye, K. P., & Rylander, R. (2001). The prevalence of annoyance and effects after long-term exposure to low-frequency noise. Journal of Sound and Vibration, 240, 483-497.
60. Wang, J., Rubini, P., & Qin, Q. (2017). Application of a porous media model for the acoustic damping of perforated plate absorbers. Applied Acoustics, 127, 324-335.
61. Yeon, J. O., Kim, K. W., Yang, K. S., Kim, J. M., & Kim, M. J. (2014). Physical properties of cellulose sound absorbers produced using recycled paper. Construction and Building Materials, 70, 494-500.
62. Yvonne, W., Martin, T. & Lau, N. (2018). The influence of profiled ceilings on sports hall acoustics: Ground effect predictions and scale model measurements. Applied Acoustic, 130(15), 156-167.
63. Zarek, J. H. B. (1978). Sound absorption in flexible porous materials. Journal of Sound and Vibration, 61(2), 205-234.