| 研究生: |
宋宜蓁 Sung, I-Chen |
|---|---|
| 論文名稱: |
LCD用玻璃於窯爐中流動行為之模擬研究 Fluid Flow Simulation in the Smelting Furnace for LCD Glass |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 窯爐 、流動 、玻璃 、模擬 |
| 外文關鍵詞: | glass, tank, furnace, flow, simulation, LCD |
| 相關次數: | 點閱:56 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
玻璃基板已成為現今液晶顯示器不可或缺的零組件。熔融玻璃在窯爐中是否均勻澄清與玻璃基板的品質有相當大的關係。本研究針對LCD用玻璃發展出一套數值解析系統,模擬熔融玻璃在窯爐中的流動行為,並評估熔解窯爐的操作條件(氣體流量)對流場的影響。
為了建立三度空間數值解析系統,本研究採用有限差分的數值解析方法,以SOLA-SURF scheme計算流體力學技術對窯爐內的流動問題進行分析。本研究同時建構一縮小為窯爐五分之一的壓克力模型,利用高黏度的矽油取代熔融玻璃,進行物理實驗的量測與觀察,並以高分子追蹤粒子觀測熔融玻璃的流動軌跡,驗證模擬系統的可靠度。
本研究利用數值解析系統分別模擬油模與窯爐內三種進氣流量的流場,結果發現進氣流量越大,熔融玻璃的流速越快、攪拌區形成的環流越大、攪拌效率越佳,但環流內部出現的滯留區將不利於此區中的質量交換。研究的結果將作為設定窯爐參數時的參考。
Glass substrates have been the indispensable part of the liquid crystal displays. The clarity and homogeneity of the molten glass in the furnace are closely related to the quality of the glass substrates. In this study the simulation system of the flow behavior for the molten glass in the tank has been developed. Operation conditions were analyzed to see how the gas flow rate affected the fluid flow in the tank.
To develop the three dimensional fluid flow analysis system, a computational fluid dynamics technique, SOLA-SURF was used to analyze the fluid flow pattern in the tank. To verify the reliability of the simulation results, physical experiments were also conducted on a one fifth scale acrylic model at room temperature. High viscosity silicon oil was used as a substitute for the molten glass, and the trails of polymer particles were observed to visualize the paths of the molten glass.
In this work two systems, scaled model and the tank, with three bubbling rates were simulated. The result showed that as the bubbling rate increased the flow rate of molten glass increased. And the circulation became larger with better mixing effects. But the dead zones in the circulation were unfavorable for the mass transfer. These results served as the reference materials for setting the operation variables of the tank.
1. R. Viskanta, “Review of three-dimensional mathematical modeling of glass melting”, Journal of Non-Crystalline Solids, Vol. 177, pp.347-362, 1994.
2. V. Nefedov and R. M. M. Mattheij, “Simulation of flow in a glass tank”, In D. Cioranescu and J.-L. Lions(Eds.), Non-linear Partial Differential Equations and their Applications, Elsevier, pp.571-590, 2002.
3. B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 1. Under Ideal Conditions”, Glass Technology, 37, No.1, pp.29-34, 1996.
4. B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 2. Dissolved gas concentration”, Glass Technology, 37, No.3, pp.101-105, 1996.
5. B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 3. Bubble Trajectories”, 37, No.4, pp.137-142, 1996.
6. B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 4. Bubble Number Density Distribution”, 37, No.5, pp.164-168, 1996.
7. C. Moukarzel, W. S. Kuhn and D. Clodic, “Numerical Precision of Minimum Residence Time Calculations for Glass Tanks: The TC21-RRT1 Case”, Glass Science Technology, 76, No.2, pp.81-90, 2003
8. O. S. Verheijen, R. G. C. Beerkens and O. M. G. C. Op den Camp Heating of Glass Forming Batch Blanket”, 63rd Conference on Glass Problems, Columbus, Ohio, October 22 and 23, pp.1-13, 2002.
9. D. Shamp, O.Marin and M. Joshi, “Using Coupled Combustion/Glass Bath Numerical Simulation”, Ceramic Engineering and Science Proceedings, Vol.20, No.1, pp.23-36, 1999.
10. M. Petrick, S. L. Cheng and B. Golchert, “Coupled Combustion Space/Glass Melt Furnace Simulation”, Ceramic Engineering and Science Proceedings. Vol.22, No.1, pp. 247-264. 2001.
11. B. Golchert, S. L. Chang and M. Petrick, “Validation of the Combustion Space Simulation of a Glass Furnace Model”, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Nov.11-16, pp.31-39, 2001.
12. C. W. Hirt, B. D. Nichols and N. C. Romero, “SOLA-A Numerical Solution Algorithm for Transient Fluid Flows”, Los Alamos Scientific Laboratory Report LA-5852, 1975.
13. F. H. Harlow and J. E. Welch, “Numerical Calculation of Time Dependent Viscous Incompressible Flow of Fluid with Free Surface”, Physics of Fluids, Vol.8, pp.2182-2189, 1965.
14. J. Szekely, H. J. Wang and K. M. Kiser, “Flow Pattern and Velocity Prediction in a Water Model of an Argon-Stirred Ladle”, Metallurgical Transactions B, Vol.
13, pp.287-295, 1976.
15. J. Szekely, T. Lehner and C. W. Chang, “Flow Phenomena Mixing and Mass Transfer in Argon-Stirred Ladles”, Ironmaking and Steelmaking, No. 6, pp.285-293, 1979.
16. S. M. Pan, J. D. Chiang, W. S. Hwang, “Simulation of Large Bubble/Molten Steel Interaction for Gas-Injected Ladle”, ASM International, Vol.8, No.2, pp.236-244, 1999.
17. W. A. Janna, “Introduction to Fluid Mechanics”, Third Edition, PWS Publishing Company, 1993.
18. M. Y. Zhu, T. Inomoto, I. Sawada and T. C. Hsiao, “Fluid Flow and Mixing Phenomena in the Ladle Stirred by Argon through Multi-Tuyere”, ISIJ international, Vol.35, No.5, pp.472-479, 1995.
19. D. Mazumdar, H. B. Kim and R. I. L. Guthrie, “Modelling Criteria for Flow Simulation in Gas Stirred Ladles: Experimental Study”, Ironmaking and Steelmaking, Vol.27, No.4, pp.302-309, 2000.
20. 范志銘, “數學模式與物理模式在鋼鐵盛鋼桶精鍊與連鑄製程之應用研究”, 國立成功大學材料科學及工程學系博士論文, 2002.