簡易檢索 / 詳目顯示

研究生: 陳柏勳
Chen, Bo-Xun
論文名稱: 甲基硼酸酯添加劑對於NCA正極鈍化層之研究
ADM as an effective additive to improve CEI performance of LiNiCoAlO2 electrode
指導教授: 黃肇瑞
Huang, Jow-Lay
共同指導教授: 張家欽
Chang, Chia-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 添加劑固態電解質界面層狀正極材料LNCAO鋰離子電池
外文關鍵詞: Additive, CEI, layered cathode materials LiNiCoAlO2, lithium-ion batteries
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池於首圈化成時,於電解質與正負極活性材料表面會形成一層固態電解質界面 (Solid Electrolyte Interface;SEI),也有人稱在正極表面所形成的為CEI膜,因本研究是添加劑用於正極材料NCA,所以會針對CEI膜進行研究,CEI膜是源自於電解液發生氧化反應在正極材料表面上,CEI膜是表面生成的鈍化層,是鋰離子的優良導體,使鋰離子自由進出電極,同時,也是電子的絕緣體,能有效阻止電子傳導進入正負極材料內與電解液中,因此可以有效避免電解液受到分解,並避免溶劑分子嵌入活性材料而造成裂解,好的CEI膜較薄且均勻,這樣可以避免鋰離子在膜中傳遞阻抗增加,提升鋰離子的可逆性。
    添加劑主要是用來修飾CEI膜的化成,加入少許添加劑即可大大提升電池性能,是相當經濟實惠的方法,本研究主要是透過甲基硼酸酯 (ADM)作為添加劑來修飾CEI膜,ADM相較於有機電解液,能與鋰鹽更早吸附,這也避免了有機電解液被分解的現象,且在CEI膜的成分也會因此改變,更有利於鋰離子的嵌入/嵌出,由於在鋰離子嵌入/嵌出過程會發生材料的結構變化,故好的CEI膜能夠使鋰離子均勻進出,不會由特定區域進入,這也使材料不會有應力集中的現象產生,減少了傳遞時的阻抗。
    透過研究顯示經ADM修飾的CEI膜能有效提升電池的循環表現,經150圈循環後電容量保留率也大幅提升,運用快速充放電速率上也能改善其性能,由電化學交阻抗測試可以發現,在鋰離子傳遞在膜中的阻抗也有明顯降低,這也改善了鋰離子的不可逆性,並對於正極材料NCA的結構穩定性也有大幅提升,所以透過本研究能得知添加劑ADM是有利於鋰離子電池在未來應用是上的優勢。

    We successfully improve structure stability and electrochemical performance of cathode material LNCAO with additive called Methylboronic acid MIDA ester (ADM). In this study, we use ADM to modify the CEI layers on the surface of layered cathode material. The electrolyte of this study is 1 M LiPF6 in EC/DEC (1:1) with 1 wt% ADM. This study shows thinner and more uniform CEI layers with ADM modified by Ultrahigh Resolution Analytical Electron Spectroscopy (HR-AEM). The result of electron spectroscopy for chemical analysis (ESCA) shows more P-F bonds (LiPF6) and less ROCO2Li、ROLi in the CEI layers with ADM. The result of in-situ X-Ray diffraction (in-situ XRD) shows the CEI layers with ADM modified can improve structure stability of layered cathode materials. The cycling performance shows better capacity retention (C.R.) at 0.1 C rate after 150 cycles. By C-rate test, we can find higher capacity at 1 C rate in the ADM system. Through the above results, we think the CEI layers with ADM modified can improve structure stability and electrochemical performance of the layered cathode materials.

    中文摘要 I Extend abstract II 致謝 XI 總目錄 XIII 圖目錄 XVI 表目錄 XXV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 3 2.1 鋰離子電池發展與應用 3 2.2 鋰離子電池組成與工作原理 6 2.3 鋰離子電池材料介紹 8 2.3.1 鋰離子電池正極材料 8 2.3.2 鋰離子電池負極材料 11 2.3.3 鋰離子電池電解液 13 2.4 固態電解質介面 (Solid Electrolyte Interphase;SEI) 16 2.4.1 SEI膜之形成機制 16 2.4.2 電解液之氧化還原反應 19 2.4.3 CEI膜之鑑測分析 21 2.4.4 SEI膜之類型 27 2.4.5 影響SEI膜之因素 29 2.5 電解液添加劑 36 2.5.1 添加劑之效用 36 2.5.2 添加劑於CEI膜的改善 44 2.5.3 ADM作為添加劑之研究 49 第三章 實驗方法與步驟 55 3.1 實驗設計與架構 55 3.2 材料鑑定分析 56 3.2.1 Xray 繞射分析儀 56 3.2.2 同步輻射Xray繞射分析儀 (Synchrotron Radiation Xray diffraction spectrometer:XRD) 57 3.2.3 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis: ESCA) 58 3.2.4 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer : FTIR 59 3.2.4 高解析場發射掃描式電子顯微鏡 (High Resolution Field Emission Scanning Electron Microscopy : FE-SEM) 60 3.2.5 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical Electron Spectroscopy: HR-AEM) 61 3.3 鈕扣型半電池組裝及電化學性質測試 62 3.3.1 極片與電解液配製 63 3.3.2 半電池組裝 63 3.3.3 半電池拆解 64 3.3.4 半電池充放電測試 65 3.3.5 不同充放電速率測試 66 3.3.6 循環伏安法測試 67 第四章 結果與討論 72 4.1 正極極片特性分析 72 4.1.1 SEM分析表面形貌與顯微結構 72 4.1.2 XRD定性分析 73 4.2 電解液鍵結分析 74 4.3 電化學性能分析 77 4.3.1 電池化成行為分析 77 4.3.2 循環壽命充放電測試 80 4.3.3 不同充放電速率測試 (C-rate) 83 4.3.4 循環伏安法分析 (Cyclic voltammetry) 85 4.3.5 交流阻抗分析 87 4.3 正極鈍化層分析 90 4.4.1 SEM分析表面形貌與顯微結構 90 4.4.2 TEM分析表面形貌與顯微結構 92 4.4.3 In situ synchroton radiation XRD分析結構變化 94 4.4.4 ESCA分析鍵結能貢獻與變化 100 第五章 結論 104 參考文獻 106

    [1] M. S. Whittingham, "Electrical energy storage and intercalation chemistry," Science, vol. 192, no. 4244, pp. 1126-1127, 1976.
    [2] K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough, "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, no. 6, pp. 783-789, 1980.
    [3] J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 171-179, 2011.
    [4] T. Randall, "Here’s how electric cars will cause the next oil crisis," Bloomberg, New York, accessed Mar, vol. 25, p. 2016, 2016.
    [5] S. Megahed and B. Scrosati, "Lithium-ion rechargeable batteries," Journal of Power Sources, vol. 51, no. 1-2, pp. 79-104, 1994.
    [6] U. Gulzar et al., "Next-Generation Textiles: From Embedded Supercapacitors to Lithium Ion Batteries," J. Mater. Chem. A, vol. 4, pp. 16771-16800, 09/13 2016.
    [7] A. Mishra et al., "Electrode materials for lithium-ion batteries," Materials Science for Energy Technologies, vol. 1, no. 2, pp. 182-187, 2018.
    [8] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015/06/01/ 2015.
    [9] C. Julien, J.-P. Pereira-Ramos, and A. Momchilov, New trends in intercalation compounds for energy storage. Springer Science & Business Media, 2012.
    [10] A. Du Pasquier, I. Plitz, S. Menocal, and G. Amatucci, "A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications," Journal of Power Sources, vol. 115, no. 1, pp. 171-178, 2003/03/27/ 2003.
    [11] I. Bloom et al., "Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells," Journal of power sources, vol. 124, no. 2, pp. 538-550, 2003.
    [12] M. M. Thackeray, "Manganese oxides for lithium batteries," Progress in Solid State Chemistry, vol. 25, no. 1, pp. 1-71, 1997/01/01/ 1997.
    [13] C. J. Orendorff and D. H. Doughty, "Lithium ion battery safety," The Electrochemical Society Interface, vol. 21, no. 2, p. 35, 2012.
    [14] S.-i. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada, "Experimental visualization of lithium diffusion in LixFePO4," Nature Materials, vol. 7, no. 9, pp. 707-711, 2008/09/01 2008.
    [15] N. Recham et al., "A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries," Nature Materials, vol. 9, no. 1, pp. 68-74, 2010/01/01 2010.
    [16] J. Barker, R. K. B. Gover, P. Burns, A. Bryan, M. Y. Saidi, and J. L. Swoyer, "Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F," Journal of Power Sources, vol. 146, no. 1, pp. 516-520, 2005/08/26/ 2005.
    [17] J. Barker, M. Saidi, and J. Swoyer, "Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4 F," Journal of the Electrochemical Society, vol. 150, no. 10, p. A1394, 2003.
    [18] M. M. Doeff, "Batteries: overview of battery cathodes," 2011.
    [19] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist’s perspective," Chemical Society Reviews, vol. 38, no. 9, pp. 2565-2575, 2009.
    [20] N. Spinner, L. Zhang, and W. E. Mustain, "Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM," Journal of Materials Chemistry A, vol. 2, no. 6, pp. 1627-1630, 2014.
    [21] J. A. Riddick, W. B. Bunger, and T. K. Sakano, "Organic solvents: physical properties and methods of purification," 1986.
    [22] K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," Chemical reviews, vol. 104, no. 10, pp. 4303-4418, 2004.
    [23] A. Chagnes and J. Swiatowska, "Electrolyte and solid-electrolyte interphase layer in lithium-ion batteries," Lithium Ion Batteries-New Developments, pp. 145-172, 2012.
    [24] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010.
    [25] D. Aurbach et al., "The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite electrodes," Journal of The Electrochemical Society, vol. 142, no. 9, p. 2882, 1995.
    [26] W. Liu et al., "Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries," Angewandte Chemie International Edition, vol. 54, no. 15, pp. 4440-4457, 2015.
    [27] J. W. Choi and D. Aurbach, "Promise and reality of post-lithium-ion batteries with high energy densities," Nature Reviews Materials, vol. 1, no. 4, pp. 1-16, 2016.
    [28] Q. Wu, S. Mao, Z. Wang, Y. Tong, and Y. Lu, "Improving LiNixCoyMn1− x− yO2 cathode electrolyte interface under high voltage in lithium ion batteries," Nano Select, vol. 1, no. 1, pp. 111-134, 2020.
    [29] L. R. Faulkner and A. J. Bard, Electrochemical methods: fundamentals and applications. John Wiley and Sons, 2002.
    [30] P. Peljo and H. H. Girault, "Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception," Energy & Environmental Science, vol. 11, no. 9, pp. 2306-2309, 2018.
    [31] H. Wang, X. Li, F. Li, X. Liu, S. Yang, and J. Ma, "Formation and modification of cathode electrolyte interphase: A mini review," Electrochemistry Communications, vol. 122, p. 106870, 2021/01/01/ 2021.
    [32] Q. Li et al., "Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes," ACS Applied Materials & Interfaces, vol. 12, no. 2, pp. 2319-2326, 2020/01/15 2020.
    [33] W. Lu, J. Zhang, J. Xu, X. Wu, and L. Chen, "In Situ Visualized Cathode Electrolyte Interphase on LiCoO2 in High Voltage Cycling," ACS Applied Materials & Interfaces, vol. 9, no. 22, pp. 19313-19318, 2017/06/07 2017.
    [34] Y. Chen et al., "Armoring LiNi1/3Co1/3Mn1/3O2 Cathode with Reliable Fluorinated Organic–Inorganic Hybrid Interphase Layer toward Durable High Rate Battery," Advanced Functional Materials, vol. 30, no. 19, p. 2000396, 2020.
    [35] B. Deng et al., "Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive," Electrochimica Acta, vol. 236, pp. 61-71, 2017/05/10/ 2017.
    [36] C. Yan et al., "Toward critical electrode/electrolyte interfaces in rechargeable batteries," Advanced Functional Materials, vol. 30, no. 23, p. 1909887, 2020.
    [37] E. Peled, D. Golodnitsky, and G. Ardel, "Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes," Journal of The Electrochemical Society, vol. 144, no. 8, pp. L208-L210, 1997/08/01 1997.
    [38] D. Aurbach, "Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries," Journal of Power Sources, vol. 89, no. 2, pp. 206-218, 2000/08/01/ 2000.
    [39] J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter, and P. Bieker, "Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries," Journal of The Electrochemical Society, vol. 162, no. 6, pp. A1094-A1101, 2015.
    [40] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries," NPJ Computational materials, vol. 4, no. 1, pp. 1-26, 2018.
    [41] D. Aurbach, Y. Gofer, M. Ben-Zion, and P. Aped, "The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency," Journal of Electroanalytical Chemistry, vol. 339, no. 1-2, pp. 451-471, 1992.
    [42] D. Aurbach, A. Zaban, A. Schechter, Y. Ein‐Eli, E. Zinigrad, and B. Markovsky, "The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes," Journal of The Electrochemical Society, vol. 142, no. 9, p. 2873, 1995.
    [43] D. Aurbach, M. Daroux, P. Faguy, and E. Yeager, "Identification of surface films formed on lithium in propylene carbonate solutions," Journal of The Electrochemical Society, vol. 134, no. 7, p. 1611, 1987.
    [44] Y. Ein-Eli and D. Aurbach, "The correlation between the cycling efficiency, surface chemistry and morphology of Li electrodes in electrolyte solutions based on methyl formate," Journal of power sources, vol. 54, no. 2, pp. 281-288, 1995.
    [45] R. Fong, U. Von Sacken, and J. R. Dahn, "Studies of lithium intercalation into carbons using nonaqueous electrochemical cells," Journal of The Electrochemical Society, vol. 137, no. 7, p. 2009, 1990.
    [46] C. R. Yang, Y. Y. Wang, and C. C. Wan, "Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte," Journal of Power Sources, vol. 72, no. 1, pp. 66-70, 1998/03/30/ 1998.
    [47] H. Kim, J. T. Lee, and G. Yushin, "High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector," Journal of power sources, vol. 226, pp. 256-265, 2013.
    [48] M. Dollé, S. Grugeon, B. Beaudoin, L. Dupont, and J. M. Tarascon, "In situ TEM study of the interface carbon/electrolyte," Journal of Power Sources, vol. 97-98, pp. 104-106, 2001/07/01/ 2001.
    [49] K. Kanamura, S. Shiraishi, and Z. i. Takehara, "Electrochemical Deposition of Very Smooth Lithium Using Nonaqueous Electrolytes Containing HF," Journal of The Electrochemical Society, vol. 143, no. 7, pp. 2187-2197, 1996/07/01 1996.
    [50] A. M. Haregewoin, A. S. Wotango, and B.-J. Hwang, "Electrolyte additives for lithium ion battery electrodes: progress and perspectives," Energy & Environmental Science, vol. 9, no. 6, pp. 1955-1988, 2016.
    [51] Y. An, P. Zuo, X. Cheng, L. Liao, and G. Yin, "The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries," Electrochimica Acta, vol. 56, no. 13, pp. 4841-4848, 2011/05/01/ 2011.
    [52] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries," Inorganics, vol. 2, no. 1, pp. 132-154, 2014.
    [53] H. Xiang, H. Xu, Z. Wang, and C. Chen, "Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes," Journal of Power Sources, vol. 173, no. 1, pp. 562-564, 2007.
    [54] H. Ota, A. Kominato, W.-J. Chun, E. Yasukawa, and S. Kasuya, "Effect of cyclic phosphate additive in non-flammable electrolyte," Journal of power sources, vol. 119, pp. 393-398, 2003.
    [55] T. J. Richardson and P. N. Ross, "Overcharge Protection for Rechargeable Lithium Polymer Electrolyte Batteries," Journal of The Electrochemical Society, vol. 143, no. 12, pp. 3992-3996, 1996/12/01 1996.
    [56] V. Prakash Reddy, M. Blanco, and R. Bugga, "Boron-based anion receptors in lithium-ion and metal-air batteries," Journal of Power Sources, vol. 247, pp. 813-820, 2014/02/01/ 2014.
    [57] M. Herstedt, M. Stjerndahl, T. Gustafsson, and K. Edström, "Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery," Electrochemistry Communications, vol. 5, no. 6, pp. 467-472, 2003/06/01/ 2003.
    [58] Z. Chen and K. Amine, "Bifunctional electrolyte additive for lithium-ion batteries," Electrochemistry Communications, vol. 9, no. 4, pp. 703-707, 2007/04/01/ 2007.
    [59] C.-C. Chang and T.-K. Chen, "Tris(pentafluorophenyl) borane as an electrolyte additive for LiFePO4 battery," Journal of Power Sources, vol. 193, no. 2, pp. 834-840, 2009/09/05/ 2009.
    [60] V. Aravindan, J. Gnanaraj, S. Madhavi, and H. K. Liu, "Lithium‐ion conducting electrolyte salts for lithium batteries," Chemistry–A European Journal, vol. 17, no. 51, pp. 14326-14346, 2011.
    [61] P. Ping, Q. Wang, J. Sun, H. Xiang, and C. Chen, "Thermal stabilities of some lithium salts and their electrolyte solutions with and without contact to a LiFePO4 electrode," Journal of the Electrochemical Society, vol. 157, no. 11, p. A1170, 2010.
    [62] J. Liu, Z. Chen, S. Busking, and K. Amine, "Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries," Electrochemistry Communications, vol. 9, no. 3, pp. 475-479, 2007/03/01/ 2007.
    [63] Y. Qin, Z. Chen, J. Liu, and K. Amine, "Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells," Electrochemical and Solid-State Letters, vol. 13, no. 2, p. A11, 2010.
    [64] M. Xu, L. Zhou, L. Hao, L. Xing, W. Li, and B. L. Lucht, "Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 16, pp. 6794-6801, 2011/08/15/ 2011.
    [65] J. Kalhoff, G. G. Eshetu, D. Bresser, and S. Passerini, "Safer electrolytes for lithium‐ion batteries: state of the art and perspectives," ChemSusChem, vol. 8, no. 13, pp. 2154-2175, 2015.
    [66] S. Dalavi, M. Xu, B. Knight, and B. L. Lucht, "Effect of Added LiBOB on High Voltage (LiNi0.5Mn1.5O4) Spinel Cathodes," Electrochemical and Solid-State Letters, vol. 15, no. 2, pp. A28-A31, 2011/01/01 2011.
    [67] X. T. Wang et al., "Regulation of Cathode‐Electrolyte Interphase via Electrolyte Additives in Lithium Ion Batteries," Chemistry–An Asian Journal, vol. 15, no. 18, pp. 2803-2814, 2020.
    [68] N. P. W. Pieczonka et al., "Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries," The Journal of Physical Chemistry C, vol. 117, no. 44, pp. 22603-22612, 2013/11/07 2013.
    [69] Q. Zheng et al., "N-Allyl-N,N-Bis(trimethylsilyl)amine as a Novel Electrolyte Additive To Enhance the Interfacial Stability of a Ni-Rich Electrode for Lithium-Ion Batteries," ACS Applied Materials & Interfaces, vol. 10, no. 19, pp. 16843-16851, 2018/05/16 2018.
    [70] Y.-Q. Chen et al., "An electrolyte additive with boron-nitrogen-oxygen alkyl group enabled stable cycling for high voltage LiNi0. 5Mn1. 5O4 cathode in lithium-ion battery," Journal of Power Sources, vol. 477, p. 228473, 2020.
    [71] "國家同步輻射研究中心."
    [72] E. Barsoukov et al., "Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy," Solid State Ionics, vol. 161, no. 1, pp. 19-29, 2003/07/01/ 2003.
    [73] Q.-C. Zhuang, X.-Y. Qiu, S.-D. Xu, Y.-H. Qiang, and S.-G. Sun, "Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries," Lithium Ion Batteries—New Developments, vol. 8, pp. 189-227, 2012.
    [74] N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, and Y. Ukyo, "Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell," Journal of The Electrochemical Society, vol. 159, no. 7, pp. A1034-A1039, 2012.
    [75] J.-L. Yue, Y.-N. Zhou, X. Yu, S.-M. Bak, X.-Q. Yang, and Z.-W. Fu, "O3-type layered transition metal oxide Na (NiCoFeTi) 1/4 O 2 as a high rate and long cycle life cathode material for sodium ion batteries," Journal of Materials Chemistry A, vol. 3, no. 46, pp. 23261-23267, 2015.
    [76] T. Ohzuku, A. Ueda, and M. Nagayama, "Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells," Journal of The Electrochemical Society, vol. 140, no. 7, pp. 1862-1870, 1993/07/01 1993.
    [77] E. Zhecheva and R. Stoyanova, "Stabilization of the layered crystal structure of LiNiO2 by Co-substitution," Solid State Ionics, vol. 66, no. 1, pp. 143-149, 1993/10/01/ 1993.
    [78] Q.-Q. Qiu et al., "Improving the electrochemical performance and structural stability of the LiNi0. 8Co0. 15Al0. 05O2 cathode material at high-voltage charging through Ti substitution," ACS applied materials & interfaces, vol. 11, no. 26, pp. 23213-23221, 2019.
    [79] N. Zhang et al., "In situ X-ray diffraction and thermal analysis of LiNi0. 8Co0. 15Al0. 05O2 synthesized via co-precipitation method," Journal of Energy Chemistry, vol. 27, no. 6, pp. 1655-1660, 2018.
    [80] I. Belharouak, W. Lu, D. Vissers, and K. Amine, "Safety characteristics of Li (Ni0. 8Co0. 15Al0. 05) O2 and Li (Ni1/3Co1/3Mn1/3) O2," Electrochemistry Communications, vol. 8, no. 2, pp. 329-335, 2006.
    [81] Z. Zhang, R. G. Antonio, and K. L. Choy, "Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries," Journal of Power Sources, vol. 435, p. 226736, 2019/09/30/ 2019.
    [82] P. M. Sudeep et al., "Functionalized boron nitride porous solids," RSC advances, vol. 5, no. 114, pp. 93964-93968, 2015.
    [83] D. Li, J. Lu, D. Yu, and Y. Tian, "Study on Raman Spectroscopy and Purification of BCN Compound," Metallurgical and Materials Transactions A, vol. 42, no. 9, pp. 2527-2529, 2011.
    [84] D. Chen, Y. Huang, X. Hu, R. Li, Y. Qian, and D. Li, "Synthesis and characterization of “Ravine-Like” BCN compounds with high capacitance," Materials, vol. 11, no. 2, p. 209, 2018.
    [85] D. Chen, Y. Huang, X. Hu, R. Li, Y. Qian, and D. Li, "Synthesis and Characterization of "Ravine-Like" BCN Compounds with High Capacitance," Materials (Basel), vol. 11, no. 2,
    [86] A. M. Soydan and R. Akdeniz, "Polymer Electrolytes Based on Borane/Poly(ethylene glycol) Methyl Ether for Lithium Batteries," Journal of Chemistry, vol. 2017, p. 4839410, 2017/10/03 2017.
    [87] M. Şenel, A. Bozkurt, and A. Baykal, "An investigation of the proton conductivities of hydrated poly (vinyl alcohol)/boric acid complex electrolytes," Ionics, vol. 13, no. 4, pp. 263-266, 2007.
    [88] P.-Y. Pennarun, P. Jannasch, S. Papaefthimiou, N. Skarpentzos, and P. Yianoulis, "High coloration performance of electrochromic devices assembled with electrolytes based on a branched boronate ester polymer and lithium perchlorate salt," Thin Solid Films, vol. 514, no. 1-2, pp. 258-266, 2006.
    [89] C. Marino et al., "Solvation and Dynamics of Lithium Ions in Carbonate-Based Electrolytes during Cycling Followed by Operando Infrared Spectroscopy: The Example of NiSb2, a Typical Negative Conversion-Type Electrode Material for Lithium Batteries," The Journal of Physical Chemistry C, vol. 121, no. 48, pp. 26598-26606, 2017/12/07 2017.
    [90] F. Shi, P. N. Ross, G. A. Somorjai, and K. Komvopoulos, "The chemistry of electrolyte reduction on silicon electrodes revealed by in situ ATR-FTIR spectroscopy," The Journal of Physical Chemistry C, vol. 121, no. 27, pp. 14476-14483, 2017.
    [91] S. Pérez-Villar, P. Lanz, H. Schneider, and P. Novák, "Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy," Electrochimica Acta, vol. 106, pp. 506-515, 2013/09/01/ 2013.
    [92] B.-s. Liu et al., "Facile strategy of NCA cation mixing regulation and its effect on electrochemical performance," RSC advances, vol. 6, no. 110, pp. 108558-108565, 2016.
    [93] H. Kondo et al., "Effects of Mg-substitution in Li (Ni, Co, Al) O2 positive electrode materials on the crystal structure and battery performance," Journal of power sources, vol. 174, no. 2, pp. 1131-1136, 2007.
    [94] X. Li, F. Kang, W. Shen, and X. Bai, "Improvement of structural stability and electrochemical activity of a cathode material LiNi0. 7Co0. 3O2 by chlorine doping," Electrochimica Acta, vol. 53, no. 4, pp. 1761-1765, 2007.
    [95] K.-E. Kim et al., "A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates," Electrochemistry Communications, vol. 61, pp. 121-124, 2015/12/01/ 2015.
    [96] Y. Chen et al., "Influence of integrated microstructure on the performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 as a cathodic material for lithium ion batteries," RSC Adv., vol. 7, pp. 29233-29239, 05/30 2017.
    [97] X.-J. Zhu et al., "Preparation and characterization of LiNi0.80Co0.20–xAlxO2 as cathode materials for lithium ion batteries," Journal of Electroceramics, vol. 17, no. 2, pp. 645-649, 2006/12/01 2006.
    [98] H. Xie et al., "Synthesis of LiNi 0.8 Co 0.15 Al 0.05 O 2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties," Journal of Materials Chemistry A, vol. 3, no. 40, pp. 20236-20243, 2015.
    [99] S. Jamil et al., "Enhanced cycling stability of nickel-rich layered oxide by tantalum doping," Journal of Power Sources, vol. 473, p. 228597, 2020/10/15/ 2020.
    [100] X.-G. Sun et al., "Bis(fluoromalonato)borate (BFMB) anion based ionic liquid as an additive for lithium-ion battery electrolytes," Journal of Materials Chemistry A, 10.1039/C3TA14943A vol. 2, no. 20, pp. 7606-7614, 2014.
    [101] C. Yan et al., "Dual‐layered film protected lithium metal anode to enable dendrite‐free lithium deposition," Advanced materials, vol. 30, no. 25, p. 1707629, 2018.
    [102] B. G. Lee and Y. J. Park, "Enhanced electrochemical performance of lithia/Li2RuO3 cathode by adding tris(trimethylsilyl)borate as electrolyte additive," Scientific Reports, vol. 10, no. 1, p. 13498, 2020/08/11 2020.
    [103] H. Lyu et al., "Bis(trimethylsilyl) 2-fluoromalonate derivatives as electrolyte additives for high voltage lithium ion batteries," Journal of Power Sources, vol. 412, pp. 527-535, 02/01 2019.

    無法下載圖示 校內:2026-08-12公開
    校外:2026-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE