| 研究生: |
馮椲程 Pangestu, Stalline |
|---|---|
| 論文名稱: |
甲烷/空氣預混火焰通入鐵、鐵-鋁,與鐵-煤之顆粒燃燒特性探討 Particle Combustion Characteristics of Iron, Iron mixed with Aluminum, and Iron mixed with Coal in Methane-Air Premixed Flames |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 金屬燃料 、粒子微爆炸 、反應材料 、混合燃燒 、羰基鐵。 |
| 外文關鍵詞: | metal fuels, particle micro-explosion, reactive materials, hybrid combustion, iron carbonyl. |
| 相關次數: | 點閱:102 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高能金屬燃料,視為一種潔淨且可回收的能源載體,係具有前瞻的反應材料(reactive materials),可用於未來的低碳經濟。高能量密度的金屬材料是具有發展潛力,得以取代目前能源領域中所使用的化石燃料,以應對迫在眉睫的全球變暖和能源危機問題。本研究的主要目是在於分析和探討純鐵顆粒和混合顆粒(鐵−鋁和鐵−煤)在甲烷−空氣預混火焰中的燃燒行為。混合顆粒是以重量配比為1:1的條件下製備而成。 鐵和鐵−煤的熱重分析顯示,在相對低的溫度範圍內,氧化反應過程相似。然而,鐵−鋁混合物則表現出多級氧化過程。在較小的固態燃料進料速度範圍內,選用微米級固體燃料輸送至化學當量條件下的甲烷−空氣預混火焰進行研究。在提高固態燃料進料速度時,實驗結果顯示會改變預混火焰的鋒面。進行一系列相關實驗探索固體燃料與甲烷−空氣預混火焰之間的相互依賴性以及一些基本燃燒現象的變化,例如燃燒速度,火焰溫度,氣體排放和金屬氧化物產物。此外,在鐵−煤混於甲烷−空氣預混燃燒中觀察到顆粒微爆炸(particle micro-explosion)現象。推測一氧化碳氣體被捕集於薄壁且多孔性的氧化鐵顆粒內部,並導致開始羰基鐵(iron carbonyl)的生成。最後,在氧化鐵微粒中的可燃性一氧化碳與羰基鐵誘發微爆炸。為了驗證與支持所提出的粒子微爆炸機理之推論,在混合鐵−甲烷−空氣燃燒中加入了一氧化碳與金屬有機框架材料(Metal Organic Frameworks,簡稱MOF)粉末以觀察是否有顆粒微爆炸之誘發。
High energetic metal fuels, regarded as a clean and recyclable energy carrier, are promising reactive materials to apply for the future low-carbon emission. Higher energy density materials are the potential to substitute fossil fuel in energy sectors for coping with the imminent global warming and energy crisis issues. In this study, the main purpose is to analyze and investigate the combustion behaviors of pure iron particles and mixing particles, namely, iron−aluminum and iron−coal in hybrid methane−air premixed flames. The mechanically mixing particles were prepared based on the weight with a ratio of 1:1. Thermal gravimetry analysis for Fe and Fe−Coal illustrates similar oxidation range in a quite low-temperature region, whilst Fe−Al mixture presents a multi-stage oxidation process. Methane−air conical premixed flame in the stoichiometric condition was seeded with micron-sized solid fuels over a small range of feeding rates. It appeared that an increase of solid particles seeding would alter the hybrid flame front. A series of relevant experiments explore the interdependency between solid fuels and a methane−air premixed flame and some underlying issues, such as changes in burning velocity, flame temperature, gas emission, and metal oxide product. Uniquely, particle micro-explosion phenomena were observed in the Fe−Coal hybrid combustion. It conjectures that CO gas was trapped inside the thin porous iron oxide and led to the inception of iron carbonyl production. Combustible CO and iron carbonyl induced the inner combustion, leading to the particle torn or cracked. Ultimately, adding CO and metal organic frameworks (MOF) powder in a hybrid Fe flame was engaged to support the speculation of the proposed particle micro explosion mechanism.
[1]T. Nakata, D. Silva, and M. Rodionov, Application of energy system models for designing a low-carbon society. Progress in Energy and Combustion Science. 2011;37:462502.
[2]M. Z. Jacobson and M. A. Delucchi, Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy. 2011;39:11541169.
[3]P. Denholm and R. M. Margolis, Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy. 2008;36:3531-3543.
[4]I. E. Agency. IEA electricity information. 2019.
[5]R. A. Yetter, G. A. Risha, and S. F. Son, Metal particle combustion and nanotechnology. Proceedings of the Combustion Institute. 2009;32:1819-1838.
[6]N. Auner and S. Holl. Silicon as energy carrier—Facts and perspectives. Energy. 2006;31:1395-1402.
[7]S. Wang, A. L. Corcoran, and E. L. Dreizin, Combustion of magnesium powders in products of an air/acetylene flame. Combustion and Flame. 2015;162:1316-1325.
[8]C. Badiola, R. J. Gill, and E. L. Dreizin, Combustion characteristics of micron-sized aluminum particles in oxygenated environments. Combustion and Flame. 2011;158:2064-2070.
[9]R. J. Gill, C. Badiola, and E. L. Dreizin, Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combustion and Flame.2010;157:2015-2023.
[10]Y. Yang and M. He, Thermodynamic cycle analysis of ramjet engines using magnesium-based fuel. Aerospace Science and Technology. 2012;22:75-84.
[11]D. F. Waters and C. P. Cadou, "Modeling a hybrid Rankine-cycle/fuel-cell underwater propulsion system based on aluminum–water combustion. Journal of Power Sources. 2013;221:272-283.
[12]D. Wen, Nanofuel as a potential secondary energy carrier. Energy & Environmental Science. 2010;3:591.
[13]E. Lorente, Q. Cai, J. A. Peña, J. Herguido, and N. P. Brandon. Conceptual design and modelling of the Steam-Iron process and fuel cell integrated system. International Journal of Hydrogen Energy. 2009;34:5554-5562.
[14]D. Mignard and C. Pritchard, A review of the sponge iron process for the storage and transmission of remotely generated marine energy. International Journal of Hydrogen Energy. 2007;32:5039-5049.
[15]K. h. Wedepohl, The composition of the continental crust, Geochimica er Cosmochimica Acta.1995;59:1217-1232.
[16]J. M. Bergthorson and M. J. Thomson, A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews. 2018;42:1393-1417.
[17]J. M. Bergthorson, Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science. 2018;68:169-196.
[18]J. M. Bergthorson, S. Goroshin, M. J. Soo, P. Julien, J. Palecka, D. L. Frost, et al., Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy. 2015;160:368-382.
[19]J. M. Bergthorson. Alternative Fuels Laboratory, Mc Gill University, Canada. ; https://afl.mcgill.ca/AFL-Research.html[accessed 15 June 2020]
[20]P. Julien, S. Whiteley, S. Goroshin, M. J. Soo, D. L. Frost, and J. M. Bergthorson, Flame structure and particle-combustion regimes in premixed methane–iron–air suspensions. Proceedings of the Combustion Institute. 2015;35:2431-2438.
[21]C. K. Law, Combustion Physics: Cambridge University Press, 2006.
[22]W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Applied Catalysis A: General. 2007;326:17-87.
[23]Y. Aly, M. Schoenitz, and E. L. Dreizin, Ignition and combustion of mechanically alloyed Al–Mg powders with customized particle sizes. Combustion and Flame. 2013;160:835-842.
[24]M. Mursalat, M. Schoenitz, and E. L. Dreizin, Composite Al∙Ti powders prepared by high-energy milling with different process controls agents. Advanced Powder Technology. 2019;30:1319-1328.
[25]P. Garra, G. Leyssens, O. Allgaier, C. Schönnenbeck, V. Tschamber, J.-F. Brilhac, et al., Magnesium/air combustion at pilot scale and subsequent PM and NO x emissions. Applied Energy.2017;189:578-587.
[26]K. L. Chintersingh, Y. Sun, M. Schoenitz, and E. L. Dreizin, Heterogeneous reaction kinetics for oxidation and combustion of boron. Thermochimica Acta. 2019;682:178415.
[27]X. Liu, M. Schoenitz, and E. L. Dreizin. Preparation, ignition, and combustion of magnesium-calcium iodate reactive nano-composite powders. Chemical Engineering Journal. 2019;359:955962.
[28]S. Goroshin, 27th Symposium (International) on Combustion/The Combustion Institute. 1988:743-749.
[29]H. M. Cassel, Some Fundamental Aspects of Dust Flames. Washington, D.C.: U.S. Dept. of the Interior, Bureau of Mines, 1964.
[30]M. Soo, P. Julien, S. Goroshin, J. M. Bergthorson, and D. L. Frost, Stabilized flames in hybrid aluminum-methane−air mixtures. Proceedings of the Combustion Institute. 2013;34:2213-2220.
[31]K. L. Chintersingh, M. Schoenitz, and E. L. Dreizin, Boron doped with iron: Preparation and combustion in air, Combustion and Flame.2019;200:286-295.
[32]K. L. Chintersingh, M. Schoenitz, and E. L. Dreizin, Combustion of boron and boron–iron composite particles in different oxidizers. Combustion and Flame.2018;192:44-58.
[33]X. Liu, M. Schoenitz, and E. L. Dreizin, Combustion of Mg and composite Mg·S powders in different oxidizers, Combustion and Flame. 2018;195:292-302.
[34]A. Abraham, H. Nie, M. Schoenitz, A. B. Vorozhtsov, M. Lerner, A. Pervikov, et al., Bimetal Al–Ni nano-powders for energetic formulations, Combustion and Flame.2016;179-186.
[35]I. G. N. M. LAURENDEAU, Ignition Temperatures of Metals in Oxygen Atmospheres. Combustion Science and Technology.1971;3:77-82.
[36]H. K. Pinegar, M. S. Moats, and H. Y. Sohn, Process Simulation and Economic Feasibility Analysis for a Hydrogen-Based Novel Suspension Ironmaking Technology, steel research international. 2011;82:951-963.
[37]W. M. Budzianowski, Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs, Renewable and Sustainable Energy Reviews. 2012;16:6507-6521.
[38]T.R.S. Chemistry. https://www.rsc.org/periodic-table/element/26/iron;2020 [accessed 06 May 2020].
[39]R. L. B. J.C. Melcher, H. Krier, Combustion of aluminum particles in solid-rocket motor flows. 35th Joint Propulsion Conference and Exhibit-AIAA. 1999.
[40]H. K. J.C. Melcher, R.L. Burton, Burning aluminum particles inside a laboratory-scale solid rocket motor, J. Propul. Power. 2002;18:631-640.
[41]Y. Y. N. Kubota, K. Miyata, T. Kuwahara, M. Mitsuno, I. Nakagawa, Propell. Explos. Pyrot. 1991;16:287-291.
[42]J. L. W. T.F. Miller, D.H. Kiely, A next-generation AUV energy system based on aluminum-seawater combustion, Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles.2002;111-119.
[43]J. C. L. Durães, A. Portugal, Radial combustion propagation in iron(iii) oxide/aluminum thermites mixtures, Propell. Explos. Pyrot. 2006;31:42-49.
[44]V. G. A. Shidlovskii, "Combustion of nickel-aluminum thermite, Combust. Explo. Shock. 1981;81
[45]R. E. Corporation. Install Solar Panels and Benefit from Maryland Solar Energy. https://www.renewableenergysolar.net/solar/install-solar-panels-and-benefit-from-maryland-solar-energy/; [accessed 13 March 2020]
[46]U. E. I. Administration. https://www.eia.gov/ [accessed 13 March 2020]
[47]D. L. S. Jeffrey D. Naber, Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays, presented at the SAE TECHNICAL PAPER SERIES, Detroit, Michigan, 1996.
[48]A. Matsumoto, Moore, W., Lai, M., Zheng, Y, Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector. SAE Int. J. Engines. 2010;2:402-425.
[49]M. K. L. Sanghoon Kook, Srinivas Padala, and Evatt R. Hawkes, Z-type Schlieren Setup and its Application to High-Speed Imaging of Gasoline Sprays, JSAE. 2011;20119146.
[50]K. P. Brooks and M. W. Beckstead. Dynamics of aluminum combustion. Journal of Propulsion and Power. 1995;11:769-780.
[51]E. L. Dreizin, Experimental study of stages in aluminium particle combustion in air. Combustion and Flame. 1996;105:541-546.
[52]E. L. Dreizin, Metal-based reactive nanomaterials. Progress in Energy and Combustion Science. 2009;35:141-167.
[53]P. Glarborg, J. A. Miller, B. Ruscic, and S. J. Klippenstein, Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science. 2018;67:31-68.
[54]A. Raj, E. Croiset, and J. Z. Wen. Numerical analysis of effects of iron pentacarbonyl as fuel additive for reducing NO and soot precursors from methane/air diffusion flame. Fuel. 2018;216:768-780.
[55]R. W. G. L. S. Darken, The System Iron—Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases. Journal of the American Chemical Society. 1946;68:798816.
[56]E. R. Wainwright, T. A. Schmauss, S. Vummidi Lakshman, K. R. Overdeep, and T. P. Weihs. Observations during Al:Zr composite particle combustion in varied gas environments. Combustion and Flame. 2018;196:487-499.
[57]Y. Feng, L. Ma, Z. Xia, L. Huang, and D. Yang. Ignition and combustion characteristics of single gas-atomized Al–Mg alloy particles in oxidizing gas flow. Energy. 2020;196:117036.
[58]S. K. H. Felix Jeremias, Christoph Janiak, Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway. Royal Society of Chemistry. 2016.