簡易檢索 / 詳目顯示

研究生: 林佑蓁
Lin, Yu-Chen
論文名稱: 機器學習於被動式建築之應用-以立面設計之熱舒適評估流程為例
Application of Machine Learning in Passive Design Architecture: An Example of Thermal Comfort Assessment for Façade Design
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 短波輻射辦公室建築人工神經網路
外文關鍵詞: Short Wave Radiation, Office Design, Artificial Neural Network
相關次數: 點閱:51下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 被動式設計已然是當代建築的設計趨勢。對於台灣的氣候條件而言,控制進入室內的太陽輻射是永續建築設計中很重要的一環,透過立面遮陽設計可以大大減少空調能源消耗並提升使用者的熱舒適。但目前設計的初期流程中加入熱舒適評估仍面臨時間成本高昂、技術困難與模擬軟體限制等諸多問題。
    為了將熱舒適評估導入早期設計流程以輔助決策,本研究提出「立面轉譯器」的工作流程,透過綜合多個模擬軟體功能,達成在參數化設計的條件之下模擬空間中的熱舒適情形目標。本研究以辦公室做為模擬的空間,並考量風速與濕度條件以作用溫度(OT)作為衡量基準。此外,根據台灣的熱舒適區間範圍提出了年度不舒適小時數(ATDHs)與空間熱舒適自主度(sTCA)的評估指標。
    機器學習方法已應用在能源、採光等領域。本研究為了提高建築事務進行評估的可能性,在成功建立了模擬流程之後,應用「預處理器」的概念進行機器學習。預處理器的方法將格點資訊轉換為中介特徵輸入人工神經網絡(Artificial Neutral Network)的模型,透過多次變化基本模型參數重複模擬取得共60,000筆資料進行訓練。隨後,調整機器學習模型之超參數與不同輸入特徵組合建立預測模型。表現最良好之模型Dodo_1在驗證集有RMSE=2.42、R2=0.91的預測性能,模型更可同時適用於不同幾何類型之立面,證明中介特徵之概念同樣適用於熱舒適模型訓練上。
    最後,引用實際落成之立面設計理念對一位於台北之辦公室進行案例操作。透過Wallacie模組,於目標空間作全年熱舒適、視覺開闊度與全年空調熱負荷的多目的最佳化。經過300個方案的探索找出性能表現良好之方案作可視化,設計者可輕易的透過流程比較最佳方案的目標性能和設計樣式。
    透過本研究,整合了參數化設計中熱舒適模擬之多種工具,擴大了模擬之相容性,並進一步提出機器學習之模型,提供設計者於建築設計前期對多種方案的評估機制,且省去大量操作學習成本與80% 模擬時間的耗費,大幅提升了熱舒適評估於設計階段被採納的可能性。

    Passive design architecture has become the trend in architecture design. For subtropical climate like Taiwan, controlling incoming solar radiation to a building is one of the main targets of sustainable architecture designers because it decreases HVAC energy consumption and maximizes thermal comfort and usable daylight.
    To assess thermal comfort, this research introduced a new framework using the Rhinoceros platform to simulate radiant discomfort across spaces with various types of parametric façades. The framework was established based on the ASHRAE55 appendix and improved the longwave MRT calculation by using the Radiance-based pre-processing method. The use of an operative temperature (OT) map was then highlighted as a measure of the combined effect of mean radiant and air temperatures considering the conditions of air velocity and relative humidity in office layouts. Furthermore, the metric of Annual Thermal Discomfort Hours (ATDHs) is proposed using local thermal comfort range.
    The concept of “pre-processor” was then applied to in the machine learning data collection. Grids data were pre-processed that convert the design model into “Intermediary features” as input parameters representing ATDHs performance. The thermal comfort model was then trained using an artificial neural network. Consequently, the proposed thermal comfort model was tested by predicting the performance of other kinds of façades.
    Finally, this study developed a process that integrates machine learning predictive model and multi-objective algorithms to achieve rapid evaluation as well as obtain optimal solutions. Using façade design as a case study, we demonstrate the design decision process with regard to the optimized solutions.

    第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 4 1-3 研究範圍與流程 5 第二章 文獻回顧與相關理論 7 2-1 建築設計階段室內熱舒適評估 7 2-2 機器學習相關理論 14 第三章 研究方法 17 3-1 模擬評估工具 17 3-2 模擬方法與流程 21 3-3 熱舒適分布評估指標 31 3-4 模擬方法驗證 34 第四章 機器學習模型建構之探討 39 4-1 機器學習流程 39 4-2 數據集生成 44 4-3 模型訓練與測試 47 4-4 機器學習演算法及模型設定 51 4-5 模型效能評估 56 第五章 機器學習模型預測成果 57 5-1 預測模型之效能驗證 57 第六章 熱舒適評估流程之應用 65 6-1 建築與最佳化演算法 65 6-2 評估流程應用 67 第七章 結論與建議 81 參考文獻 83

    (一) 中文文獻
    [1] 內政部建築研究所. (2013). 臺灣建築能源模擬解析用逐時標準氣象資料TMY3之建置與研究. Retrieved from
    [2] 林權萱. (2021). 機器學習導入永續建築設計流程-以參數立面日光設計和性能最佳化為例. (博士). 國立成功大學,
    [3] 財團法人綠色生產力基金會. (2020). 非生產性質行業能源查核年報. Retrieved from
    [4] 楊志鴻. (2018). 金屬擴張網應用於建築立面之採光與耗能評估-以台南地區辦公建築為例
    (二) 英文文獻
    [1] Abdullah, A. H., Meng, Q., Zhao, L., & Wang, F. (2009). Field study on indoor thermal environment in an atrium in tropical climates. Building and Environment, 44(2), 431-436. doi:https://doi.org/10.1016/j.buildenv.2008.02.011
    [2] Al Horr, Y., Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., & Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, 105, 369-389. doi:https://doi.org/10.1016/j.buildenv.2016.06.001
    [3] Alam, D.-M. J., Islam, M., & Biswas, B. (2014). Energy simulation to estimate building energy consumption using EnergyPlus.
    [4] American Society of Heating, R., & Air-Conditioning, E. (2017). 2017 ASHRAE handbook.
    [5] Ames, Amsden, Revor, Eeling, Aul, & Hepherd. (2015). SmartBuildingAnalyser: A parametric early-stage analysis tool for multi-objective building design.
    [6] Arens, E., Hoyt, T., Zhou, X., Huang, L., Zhang, H., & Schiavon, S. (2015). Modeling the comfort effects of short-wave solar radiation indoors. Building and Environment, 88, 3-9. doi:https://doi.org/10.1016/j.buildenv.2014.09.004
    [7] Aries, M. B. C., Veitch, J. A., & Newsham, G. R. (2010). Windows, view, and office characteristics predict physical and psychological discomfort. Journal of Environmental Psychology, 30(4), 533-541. doi:https://doi.org/10.1016/j.jenvp.2009.12.004
    [8] Attoue, N., Shahrour, I., & Younes, R. (2018). Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting. Energies, 11(2), 395. Retrieved from https://www.mdpi.com/1996-1073/11/2/395
    [9] Atzeri, A. M., Cappelletti, F., Tzempelikos, A., & Gasparella, A. (2016). Comfort metrics for an integrated evaluation of buildings performance. Energy and Buildings, 127, 411-424. doi:https://doi.org/10.1016/j.enbuild.2016.06.007
    [10] Ayoub, M. (2020). A review on machine learning algorithms to predict daylighting inside buildings. Solar Energy, 202, 249-275. doi:https://doi.org/10.1016/j.solener.2020.03.104
    [11] Bessoudo, M., Athienitis, A., & Zmeureanu, R. (2010). Indoor thermal environmental conditions near glazed facades with shading devices – Part I: Experiments and building thermal model. Building and Environment, 45, 2506-2516. doi:10.1016/j.buildenv.2010.05.013
    [12] Carlucci, S., Cattarin, G., Causone, F., & Pagliano, L. (2015). Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy and Buildings, 104, 378–394. doi:10.1016/j.enbuild.2015.06.064
    [13] Chegari, B., Tabaa, M., Simeu, E., Moutaouakkil, F., & Medromi, H. (2021). Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms. Energy and Buildings, 239, 110839. doi:https://doi.org/10.1016/j.enbuild.2021.110839
    [14] Chen, R., Tsay, Y.-S., & Ni, S. (2022). An integrated framework for multi-objective optimization of building performance: Carbon emissions, thermal comfort, and global cost. Journal of Cleaner Production, 359, 131978. doi:https://doi.org/10.1016/j.jclepro.2022.131978
    [15] Chen, X., Yang, H., & Lu, L. (2015). A comprehensive review on passive design approaches in green building rating tools. Renewable and Sustainable Energy Reviews, 50, 1425-1436. doi:https://doi.org/10.1016/j.rser.2015.06.003
    [16] Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews, 22, 230-245. doi:https://doi.org/10.1016/j.rser.2013.02.004
    [17] Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
    [18] Gagge, A. P., & Hardy, J. D. (1967). Thermal radiation exchange of the human by partitional calorimetry. J Appl Physiol, 23(2), 248-258. doi:10.1152/jappl.1967.23.2.248
    [19] Gan, V. J. L., Luo, H., Tan, Y., Deng, M., & Kwok, H. L. (2021). BIM and Data-Driven Predictive Analysis of Optimum Thermal Comfort for Indoor Environment. Sensors, 21(13), 4401. Retrieved from https://www.mdpi.com/1424-8220/21/13/4401
    [20] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning: MIT press.
    [21] Gossard, D., Lartigue, B., & Thellier, F. (2013). Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy and Buildings, 67, 253-260. doi:https://doi.org/10.1016/j.enbuild.2013.08.026
    [22] Hong, T., Buhl, F., & Haves, P. (2009). EnergyPlus Run Time Analysis. doi:10.2172/951766
    [23] Huang, K.-T., & Hwang, R.-L. (2016). Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan. Applied Energy, 184, 1230-1240. doi:https://doi.org/10.1016/j.apenergy.2015.11.008
    [24] Huang, L., & Zhai, Z. (2020). Critical review and quantitative evaluation of indoor thermal comfort indices and models incorporating solar radiation effects. Energy and Buildings, 224, 110204. doi:https://doi.org/10.1016/j.enbuild.2020.110204
    [25] Humphreys, M. A., & Nicol, J. F. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, 34(6), 667-684.
    [26] Hwang, R.-L., & Chen, W.-A. (2022). Creating glazed facades performance map based on energy and thermal comfort perspective for office building design strategies in Asian hot-humid climate zone. Applied Energy, 311, 118689. doi:https://doi.org/10.1016/j.apenergy.2022.118689
    [27] Hwang, R.-L., & Cheng, M.-J. (2007). Field Survey on Human Thermal Comfort Reports in Air-Conditioned Offices in Taiwan. The Open Construction and Building Technology Journal, 107, 8-13. doi:10.2174/1874836800701010008
    [28] . Indoor environment in air conditioned spaces a review. (2012). Int J Adv Technol Eng Res (IJATER), 226-230.
    [29] IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from Cambridge University Press, Cambridge, UK and New York, NY, USA:
    [30] Jaakkola, J. J. K., Heinonen, O. P., & Seppänen, O. (1989). Sick building syndrome, sensation of dryness and thermal comfort in relation to room temperature in an office building: Need for individual control of temperature. Environment International, 15(1), 163-168. doi:https://doi.org/10.1016/0160-4120(89)90022-6
    [31] Jakubiec, J., & Reinhart, C. (2011). DIVA 2.0: integrating daylight and thermal simulations using Rhinoceros 3D, DAYSIM and EnergyPlus.
    [32] Khamporn, N., & Chaiyapinunt, S. (2014). An investigation on the human thermal comfort from a glass window. Engineering Journal, 18(1), 25-44.
    [33] Kheiri, F. (2018). A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews, 92, 897-920.
    [34] Kristiansen, T., Jamil, F., Hameed, I. A., & Hamdy, M. (2022). Predicting annual illuminance and operative temperature in residential buildings using artificial neural networks. Building and Environment, 217, 109031. doi:https://doi.org/10.1016/j.buildenv.2022.109031
    [35] La Gennusa, M., Nucara, A., Pietrafesa, M., & Rizzo, G. (2007). A model for managing and evaluating solar radiation for indoor thermal comfort. Solar Energy, 81, 594-606. doi:10.1016/j.solener.2006.09.005
    [36] La Gennusa, M., Nucara, A., Rizzo, G., & Scaccianoce, G. (2005). The calculation of the mean radiant temperature of a subject exposed to the solar radiation—a generalised algorithm. Building and Environment, 40(3), 367-375. doi:https://doi.org/10.1016/j.buildenv.2004.06.019
    [37] Leather, P., Pyrgas, M., Beale, D., & Lawrence, C. (1998). Windows in the Workplace:Sunlight, View, and Occupational Stress. Environment and Behavior, 30(6), 739-762. doi:10.1177/001391659803000601
    [38] Lin, C.-H., & Tsay, Y.-S. (2021). A metamodel based on intermediary features for daylight performance prediction of façade design. Building and Environment, 206, 108371. doi:https://doi.org/10.1016/j.buildenv.2021.108371
    [39] Lu, W., Fung, A., Peng, Y., Liang, C., & Rowlinson, S. (2014). Cost-benefit analysis of Building Information Modeling implementation in building projects through demystification of time-effort distribution curves. Building and Environment, 82, 317-327. doi:https://doi.org/10.1016/j.buildenv.2014.08.030
    [40] Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014). Algorithms for optimization of building design: A review. Renewable and Sustainable Energy Reviews, 31, 101-112. doi:https://doi.org/10.1016/j.rser.2013.11.036
    [41] Marino, C., Nucara, A., & Pietrafesa, M. (2017). Thermal comfort in indoor environment: Effect of the solar radiation on the radiant temperature asymmetry. Solar Energy, 144, 295-309. doi:https://doi.org/10.1016/j.solener.2017.01.014
    [42] Miljana, H., Dubois, M-C., Wall, M., & Snow, M. (Eds.). (2011). International Survey About Digital Tools Used by Architects for Solar Design. Retrieved from http://task41.iea-shc.org/Data/Sites/1/publications/International_Survey_About_Digital_Tools_Used_by_Architects_for_Solar_Design.pdf
    [43] Millán, E., Belmonte, M.-V., Boned, F.-J., Gavilanes, J., Pérez-de-la-Cruz, J.-L., & Díaz-López, C. (2022). Using machine learning techniques for architectural design tracking: An experimental study of the design of a shelter. Journal of Building Engineering, 51, 104223. doi:https://doi.org/10.1016/j.jobe.2022.104223
    [44] Naboni, E., Meloni, M., Coccolo, S., Kaempf, J., & Scartezzini, J.-L. (2017). An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia, 122, 1111-1116. doi:https://doi.org/10.1016/j.egypro.2017.07.471
    [45] Pak, M., Smith, A., & Gill, G. (2013). Ladybug : a Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-conscious Design.
    [46] Qavidel Fard, Z., Zomorodian, Z. S., & Korsavi, S. S. (2022). Application of machine learning in thermal comfort studies: A review of methods, performance and challenges. Energy and Buildings, 256, 111771. doi:https://doi.org/10.1016/j.enbuild.2021.111771
    [47] RADSITE. (2019). RADSITE. Retrieved from https://www.radiance-online.org/
    [48] Standardization, I. O. f. (2005). ISO 7730 2005-11-15 Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria: ISO.
    [49] Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563. doi:https://doi.org/10.1016/j.softx.2020.100563
    [50] Tian, Z., Zhang, X., Jin, X., Zhou, X., Si, B., & Shi, X. (2018). Towards adoption of building energy simulation and optimization for passive building design: A survey and a review. Energy and Buildings, 158, 1306-1316. doi:https://doi.org/10.1016/j.enbuild.2017.11.022
    [51] Tsay, Y.-S., Yeh, C.-Y., Chen, Y.-H., Lu, M.-C., & Lin, Y.-C. (2021). A Machine Learning-Based Prediction Model of LCCO2 for Building Envelope Renovation in Taiwan. Sustainability, 13(15), 8209. Retrieved from https://www.mdpi.com/2071-1050/13/15/8209
    [52] Wallacei. (2021). An Evolutionary Multi-Objective Optimization and Analytic Engine for Grasshopper 3D. Retrieved from https://www.wallacei.com/ (Accessed 5 May 2022)
    [53] Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications–a review. Applied Energy, 115, 164-173.
    [54] Yu, F., Wennersten, R., & Leng, J. (2020). A state-of-art review on concepts, criteria, methods and factors for reaching ‘thermal-daylighting balance’. Building and Environment, 186, 107330. doi:https://doi.org/10.1016/j.buildenv.2020.107330
    [55] Yu, W., Li, B., Jia, H., Zhang, M., & Wang, D. (2015). Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 88, 135-143. doi:https://doi.org/10.1016/j.enbuild.2014.11.063
    [56] Zani, A., Richardson, H., Tono, A., & Arens, E. (2019). Annual Radiation Discomfort: A New Climate-Based Framework For Modeling Short-Wave Solar Radiation In Indoor Spaces.
    [57] Zhai, Y., Wang, Y., Huang, Y., & Meng, X. (2019). A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance. Renewable Energy, 134, 1190-1199. doi:https://doi.org/10.1016/j.renene.2018.09.024
    [58] Zhang, A., Bokel, R., van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy and Buildings, 139, 371-384. doi:https://doi.org/10.1016/j.enbuild.2017.01.048
    [59] Zhang, H., Yang, R., You, S., Zheng, W., Zheng, X., & Ye, T. (2018). The CPMV index for evaluating indoor thermal comfort in buildings with solar radiation. Building and Environment, 134, 1-9. doi:https://doi.org/10.1016/j.buildenv.2018.02.037

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE