簡易檢索 / 詳目顯示

研究生: 李秉鴻
Lee, Bing-Hong
論文名稱: 以流體化床反應器探討Fe2O3/TiO2載氧體於化學環路燃燒CO、H2及CH4之研究
Study on Chemical Looping Combustion of CO, H2, and CH4 Using Fe2O3/TiO2 Oxygen Carrier in a Fluidized Bed Reactor
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 163
中文關鍵詞: 化學環路燃燒載氧體Fe2O3/TiO2流體化床合成氣
外文關鍵詞: Chemical looping combustion, Oxygen carrier, Fe2O3/TiO2, Fluidized bed reactor, Syngas
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟與科技的快速發展,大量的二氧化碳被排放到了大氣當中,造成了嚴重的全球暖化與氣候變遷等問題。因此,為了有效解決此問題,二氧化碳捕獲與封存技術(CCS)成為了世界各國的發展重點,在這些技術中,化學環路燃燒 (Chemical looping combustion, CLC) 被視為最有潛力且最具經濟效益之技術,可有效降低二氧化碳捕獲成本,避免NOx生成,同時提高燃燒效率。
    本研究使用臨濕含浸法自製40 wt% Fe2O3/TiO2作為載氧體,於流體化床反應器中與氣化合成氣(H2, CO, CH4)進行化學環路燃燒,探討不同操作條件(氣體濃度、氣體流速、溫度)對載氧體反應性的影響。在流體化床反應器實驗中,反應速率隨著反應氣體濃度、氣體流速和操作溫度的增加而增加,然而當溫度從800oC升至1,000oC時H2與載氧體間會由於燒結的產生而降低了反應速率。在以CO作為反應氣體的條件下,當溫度從800oC升至1,000oC時利用率從0.45增加至0.77。在本研究中CH4會造成嚴重的積碳,以至於難以精確計算載氧體的利用率。於複合氣體(CO + H2)作為反應氣體的條件下,較高的氣體濃度可以增加反應速率,但同時也會因為過高的反應速率造成燒結的現象,使得載氧體最終利用率的下降。在10次的氧化還原循環試驗中,載氧體表現出優異的耐久性與穩定性。由XRD和TGA的結果證明,反應後載氧體被還原成FeO和Fe。由元素分析(EA)與EDS的結果可知,積碳隨著CO與CH4濃度的上升而增加,但是增加溫度可以減緩由CO所引起的積碳問題。

    With the development of economic and technology, a huge number of CO2 has been released to the atmosphere, caused some severe problems such as global warming and climate change. In order to solve those problems, the carbon capture and storage (CCS) technology has been known as a promising solution. Among those technologies, the chemical looping combustion (CLC) has been considered as an efficient and promising technology which can decrease the cost of CO2 separation; avoid the formation of NOx and increase the combustion efficiency.
    In this study, the 40 wt% Fe2O3/TiO2 oxygen carriers, which prepared by incipient wetness impregnation method, were used to react with coal and biomass gasified syngas composed of H2, CO, and CH4 under various reaction conditions to investigate the reactivity of oxygen carriers under various operation conditions. In fluidized bed reactor experiments, the reaction rate generally increases with the increasing CO or H2 concentration, superficial velocity, and operating temperature. However, when temperature is 1,000oC the reaction rate of H2 decreases because of the sintering of oxygen carrier. Moreover, the final utilization of 40 wt% Fe2O3/TiO2 under 25% CO, greatly affected by temperature, increases from 0.45 to 0.77 when the operating temperature increases from 800 to 1,000oC. For the case using CH4, it was hard to analyze and calculate the utilization of oxygen carriers due to the hydrogen production and carbon deposition from the decomposition of CH4. For the complex syngas CLC tests, the higher syngas concentration leads higher reaction rate due to the better diffusion capability. However, the higher reaction rate may cause the blocking or sintering of oxygen carrier so that the final utilization decreases with increasing syngas concentration. In the 10 redox cycles test, 40 wt% Fe2O3/TiO2 oxygen carrier shows excellent durability. After the reaction, the oxygen carrier is reduced to the state between FeO and Fe, which could be proved by the results of XRD and TGA. According to the Elementary analyses, it is found that the carbon deposition increases with increasing CO or CH4 concentration. However, when the operating temperature increases from 950 to 1,000oC, it can retard the carbon deposit caused by CO.

    摘要 I Abstract II 致謝 IV Content VI List of tables XI List of figures XIII Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Objectives 3 Chapter 2 Literature and Review 4 2-1 Introduction of Carbon Dioxide 4 2-1.1 Influence of Carbon Dioxide 4 2-1.2 Carbon capture, utilization and storage (CCUS) 7 2-2 Power generation system 10 2-2.1 Integrated Gasification Combined Cycle (IGCC) 10 2-2.2 Chemical Looping Combustion (CLC) 13 2-2.3 Chemical Looping Reforming (CLR) 16 2-2.4 Chemical Looping with Oxygen Uncoupling (CLOU) 17 2-3 Characteristics of syngas 19 2-3.1 Carbon monoxide 19 2-3.2 Hydrogen 22 2-3.3 Methane 25 2-4 Preparation of Oxygen Carrier 26 2-4.1 Mechanical mixing 26 2-4.2 Co-precipitation 26 2-4.3 Sol-gel 27 2-4.4 Incipient wetness impregnation 27 2-4.5 Freeze granulation 28 2-5 Characteristics of oxygen carrier 29 2-5.1 Thermodynamics 30 2-5.2 Oxygen ratio 34 2-5.3 Stability of oxygen carrier 35 2-5.4 Mechanical strength 36 2-6 Type of Oxygen carrier 38 2-6.1 Fe-based oxygen carrier 38 2-6.2 Ni-based oxygen carrier 39 2-6.3 Cu-based oxygen carrier 39 2-6.4 Mn-based oxygen carrier 40 2-7 Fluidized bed 41 2-7.1 Fluidization 41 2-7.2 Minimum fluidized velocity 44 2-7.3 Experiment evaluation of minimum fluidized velocity and pressure drop 47 2-8 Deactivation of oxygen carrier 49 2-8.1 Sintering 49 2-8.2 Carbon deposition 49 2-8.3 Poisoning 50 2-8.4 Losses of active sites 50 2-9 Influence of operating parameters 51 2-10 Kinetics 52 2-10.1 Deactivation model 52 2-10.2 Arrhenius equation 54 Chapter 3 Material and Methods 55 3-1 Experimental methods 55 3-1.1 Experimental design 56 3-1.2 Experimental process 58 3-2 Experimental equipment 59 3-2.1 Experimental materials 59 3-2.2 Experimental facilities 60 3-2.3 Analyzer 66 3-3 Preliminary experiment 72 3-3.1 Preparation of oxygen carrier 72 3-3.2 Calibration curve preparation 73 3-3.3 Leakage proof of the system 75 3-3.4 Blank test 75 Chapter 4 Results and Discussion 77 4-1 Fluidization 77 4-1.1 The relationship between pressure drop and superficial velocity 77 4-1.2 Comparison of the experimental and simulated minimum fluidized velocity 79 4-2 Characteristics of oxygen carriers 83 4-2.1 X-ray diffraction (XRD) analysis 83 4-2.2 Inductively couple plasma optical emission spectrometry (ICP-OES) 84 4-2.3 Temperature programmed reduction (TPR) analysis 85 4-2.4 Isothermal thermogravimetric analysis 91 4-2.5 BET surface area analysis 94 4-3 Operating parameter experiment 96 4-3.1 Concentration of gaseous fuels: CO, H2 and CH4 99 4-3.2 Superficial velocity 104 4-3.3 Operating temperature 108 4-3.4 Complex syngas 111 4-3.5 Redox cycles 115 4-4 Characteristics of oxygen carrier before and after reaction 118 4-4.1 X-ray diffraction (XRD) analysis 118 4-4.2 Scanning electron microscope (SEM) analysis 120 4-4.3 Scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) analysis 126 4-4.4 Mapping analysis 130 4-4.5 X-ray photoelectron spectroscope (XPS) analysis 134 4-4.6 Fourier transform infrared (FTIR) analysis 137 4-4.7 Elemental analysis (EA) 139 4-5 Kinetics 140 4-6 Mechanisms 145 Chapter 5 Conclusion and suggestion 147 5-1 Conclusion 147 5-2 Suggestion 150 Chapter 6 Reference 151

    Abad, A., Mendiara, T., Gayán, P., García-Labiano, F., de Diego, L. F., Bueno, J. A., Pérez-Vega, R. and Adánez, J. (2017). "Comparative Evaluation of the Performance of Coal Combustion in 0.5 and 50 kWth Chemical Looping Combustion Units with Ilmenite, Redmud or Iron Ore as Oxygen Carrier." Energy Procedia 114: 285-301.
    Abdel-Wahab, A.-M., Elsherbini, A., Mohamed, O. and Nasr, O. (2017). Photocatalytic degradation of paracetamol over magnetic flower-like TiO₂/Fe₂O₃ core-shell nanostructures.
    Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P. and de Diego, L. F. (2012). "Progress in Chemical-Looping Combustion and Reforming technologies." Progress in Energy and Combustion Science 38(2): 215-282.
    Adánez-Rubio, I., Gayán, P., Abad, A., García-Labiano, F., de Diego, L. F. and Adánez, J. (2014). "Kinetic analysis of a Cu-based oxygen carrier: Relevance of temperature and oxygen partial pressure on reduction and oxidation reactions rates in Chemical Looping with Oxygen Uncoupling (CLOU)." Chemical Engineering Journal 256: 69-84.
    Adánez, J. and Abad, A. (2019). "Chemical-looping combustion: Status and research needs." Proceedings of the Combustion Institute 37(4): 4303-4317.
    Adánez, J. d., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A. and Palacios, J. (2004). "Selection of oxygen carriers for chemical-looping combustion." Energy & Fuels 18(2): 371-377.
    Ahmed, M. A., El-Katori, E. E. and Gharni, Z. H. (2013). "Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method." Journal of Alloys and Compounds 553: 19-29.
    Anthony, E. and Clough, P. (2019). Post-Combustion Carbon Capture and Storage in Industry. CO2 Separation, Purification and Conversion to Chemicals and Fuels, Springer: 39-53.
    Arrhenius, S. (1889). "Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren." Zeitschrift für physikalische Chemie 4(1): 226-248.
    Arvanitis, A., Sun, X. H., Yang, S. W., Damma, D., Smirniotis, P. and Dong, J. h. (2018). "Approaching complete CO conversion and total H2 recovery for water gas shift reaction in a high-temperature and high-pressure zeolite membrane reactor." Journal of membrane science 549: 575-580.
    Benincosa, W., Siriwardane, R., Tian, H. J. and Riley, J. (2017). "Unique phase identification of trimetallic copper iron manganese oxygen carrier using simultaneous differential scanning calorimetry/thermogravimetric analysis during chemical looping combustion reactions with methane." Applied Energy 203: 522-534.
    Blumenthal, I. (2001). "Carbon monoxide poisoning." Journal of the royal society of medicine 94(6): 270-272.
    Brdar, R. D. and Jones, R. M. (2000). "GE IGCC technology and experience with advanced gas turbines." GE Power Systems, Schenectady, NY, Paper No. GER-4207.
    Briggs, D. (1981). "Handbook of X‐ray Photoelectron Spectroscopy CD Wanger, WM Riggs, LE Davis, JF Moulder and GE Muilenberg Perkin‐Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. $195." Surface and Interface Analysis 3(4): v-v.
    Brinker, C. J. and Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing, Academic press.
    Brunauer, S., Emmett, P. H. and Teller, E. (1938). "Adsorption of gases in multimolecular layers." Journal of the American chemical society 60(2): 309-319.
    Cayan, F. N., Zhi, M. J., Pakalapati, S. R., Celik, I., Wu, N. Q. and Gemmen, R. (2008). "Effects of coal syngas impurities on anodes of solid oxide fuel cells." Journal of Power Sources 185(2): 595-602.
    Chase Jr, M. (1998). "NIST-JANAF thermochemical tables fourth edition." J. Phys. Chem. Ref. Data, Monograph 9.
    Chen, H. S., Zheng, Z., Chen, Z. W. and Bi, X. T. T. (2017). "Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study." Powder Technology 316: 410-420.
    Chen, L. Y., Bao, J. H., Kong, L., Combs, M., Nikolic, H. S., Fan, Z. and Liu, K. L. (2017). "Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion." Applied Energy 197: 40-51.
    Cheng, Z., Qin, L., Fan, J. A. and Fan, L. S. (2018). "New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems." Engineering 4(3): 343-351.
    Chiesa, P. and Consonni, S. (1999). "Shift reactors and physical absorption for low-CO2 emission IGCCs." Journal of Engineering for Gas Turbines and Power 121(2): 295-305.
    Cho, P., Mattisson, T. and Lyngfelt, A. (2005). "Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion." Industrial & Engineering Chemistry Research 44(4): 668-676.
    Cho, W. C., Kim, C. G., Jeong, S. U., Park, C. S., Kang, K. S., Lee, D. Y. and Kim, S. D. (2015). "Activation and reactivity of iron oxides as oxygen carriers for hydrogen production by chemical looping." Industrial & Engineering Chemistry Research 54(12): 3091-3100.
    Cormos, C.-C. (2017). "Chemical Looping with Oxygen Uncoupling (CLOU) concepts for high energy efficient power generation with near total fuel decarbonisation." Applied Thermal Engineering 112: 924-931.
    Costa, T. R., Gayán, P., Abad, A., García-Labiano, F., de Diego, L. F., Melo, D. M. A. and Adánez, J. (2017). "Promising Impregnated Mn-based Oxygen Carriers for Chemical Looping Combustion of Gaseous Fuels." Energy Procedia 114: 334-343.
    Council, N. R. (2004). The hydrogen economy: opportunities, costs, barriers, and R&D needs, National Academies Press.
    Crowe, C. T. (2005). Multiphase flow handbook, CRC press.
    Cuéllar-Franca, R. M. and Azapagic, A. (2015). "Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts." Journal of CO2 Utilization 9: 82-102.
    Dahl, I. M., Bakken, E., Larring, Y., Spjelkavik, A. I., Håkonsen, S. F. and Blom, R. (2009). "On the development of novel reactor concepts for chemical looping combustion." Energy Procedia 1(1): 1513-1519.
    Danks, A., Hall, S. and Schnepp, Z. (2016). "The evolution of ‘sol–gel’chemistry as a technique for materials synthesis." Materials Horizons 3(2): 91-112.
    De Jong, K. P. (2009). Synthesis of solid catalysts, John Wiley & Sons.
    Den Hoed, P. and Luckos, A. (2011). "Oxidation and reduction of iron-titanium oxides in chemical looping combustion: a phase-chemical description." Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 66(2): 249-263.
    El Hadri, N., Quang, D. V., Goetheer, E. L. V. and Abu Zahra, M. R. M. (2017). "Aqueous amine solution characterization for post-combustion CO2 capture process." Applied Energy 185: 1433-1449.
    Ergun, S. (1952). "Fluid flow through packed columns." Chem. Eng. Prog. 48: 89-94.
    Ernst, A. and Zibrak, J. D. (1998). "Carbon Monoxide Poisoning." New England Journal of Medicine 339(22): 1603-1608.
    Evdou, A., Zaspalis, V. and Nalbandian, L. (2016). "Ferrites as redox catalysts for chemical looping processes." Fuel 165: 367-378.
    Fagerlund, G. (1973). "Determination of specific surface by the BET method." Matériaux et Construction 6(3): 239-245.
    Fan, Y. Y., Siriwardane, R. and Tian, H. J. (2015). "Trimetallic oxygen carriers CuFeMnO4, CuFeMn2O4, and CuFe0. 5Mn1. 5O4 for chemical looping combustion." Energy & Fuels 29(10): 6616-6624.
    Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R. D. (2008). "Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program." International Journal of Greenhouse Gas Control 2(1): 9-20.
    Fogler, H. S. (1999). Elements of chemical reaction engineering, Third edition. Upper Saddle River, N.J. : Prentice Hall PTR, [1999] ©1999.
    Fogler, H. S. (2010). Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi, Pearson Education.
    Forzatti, P. and Lietti, L. (1999). "Catalyst deactivation." Catalysis Today 52(2): 165-181.
    Fujiki, J., Chowdhury, F. A., Yamada, H. and Yogo, K. (2017). "Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent." Chemical Engineering Journal 307: 273-282.
    Garba, Z. N. and Galadima, A. (2018). Carbon Capture and Storage (CCS) Technology: Challenges to Implementation. Reference Module in Materials Science and Materials Engineering, Elsevier.
    García-Díez, E., García-Labiano, F., de Diego, L. F., Abad, A., Gayán, P., Adánez, J. and Ruíz, J. A. C. (2017). "Steam, dry, and steam-dry chemical looping reforming of diesel fuel in a 1kWth unit." Chemical Engineering Journal 325: 369-377.
    García-Labiano, F., de Diego, L. F., Adánez, J., Abad, A. and Gayán, P. (2005). "Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system." Chemical Engineering Science 60(3): 851-862.
    García-Muñoz, P., Pliego, G., Zazo, J. A., Barbero, B., Bahamonde, A. and Casas, J. A. (2017). "Modified ilmenite as catalyst for CWPO-Photoassisted process under LED light." Chemical Engineering Journal 318: 89-94.
    Ge, H. J., Shen, L. H., Gu, H. M. and Jiang, S. X. (2015). "Effect of co-precipitation and impregnation on K-decorated Fe2O3/Al2O3 oxygen carrier in Chemical Looping Combustion of bituminous coal." Chemical Engineering Journal 262: 1065-1076.
    Geldart, D. (1973). "Types of gas fluidization." Powder Technology 7(5): 285-292.
    Giordano, L., Roizard, D. and Favre, E. (2018). "Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes." International Journal of Greenhouse Gas Control 68: 146-163.
    Global-CCS-Institute (2018). The Global Status of CCS: 2017, Global CCS Institute.
    Goldstein, M. (2008). "Carbon Monoxide Poisoning." Journal of Emergency Nursing 34(6): 538-542.
    Goroshko, V., Rozenbaum, R. and Todes, O. (1958). "Approximate laws of fluidized bed hydraulics and restrained fall." Izv. Vyssh. Uchebn. Zaved. Neft Gaz, No. i 125.
    Grenoble, D., Estadt, M. and Ollis, D. (1981). "The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts." Journal of Catalysis 67(1): 90-102.
    Harries, J. E., Brindley, H. E., Sagoo, P. J. and Bantges, R. J. (2001). "Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997." Nature 410(6826): 355.
    Harvey, D. (2000). Modern analytical chemistry, Boston: McGraw-Hill Companies, Inc.
    Hayes, P. and Jak, E. (2014). Chapter 1.1 - Introduction to Metallurgical Processing. Treatise on Process Metallurgy. S. Seetharaman. Boston, Elsevier: 15-42.
    Hossain, M. M. and de Lasa, H. I. (2008). "Chemical-looping combustion (CLC) for inherent CO2 separations—a review." Chemical Engineering Science 63(18): 4433-4451.
    Huang, Z., He, F., Zhu, H. Q., Chen, D. Z., Zhao, K., Wei, G. Q., Feng, Y. P., Zheng, A. Q., Zhao, Z. L. and Li, H. B. (2015). "Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier." Applied Energy 157: 546-553.
    Ibrahim, A. A., Fakeeha, A. H., Al-Fatesh, A. S., Abasaeed, A. E. and Khan, W. U. (2015). "Methane decomposition over iron catalyst for hydrogen production." International Journal of Hydrogen Energy 40(24): 7593-7600.
    IEA (2018). Global Energy & CO2 Status Report, International Energy Agency (IEA).
    IEA (2018). World energy outllok 2018, International Energy Agency (IEA).
    Ilavsky, J. and Bena, J. (1967). "Determination of minimum fluidization velocity of polydispersed materials (2)." Chemické Zvesti 21(12): 877-&.
    Imtiaz, Q., Hosseini, D. and Müller, C. R. (2013). "Review of oxygen carriers for chemical looping with oxygen uncoupling (CLOU): thermodynamics, material development, and synthesis." Energy Technology 1(11): 633-647.
    Ishida, M. and Jin, H. G. (1996). "A novel chemical-looping combustor without NOx formation." Industrial & Engineering Chemistry Research 35(7): 2469-2472.
    Jansen, D., Gazzani, M., Manzolini, G., Dijk, E. v. and Carbo, M. (2015). "Pre-combustion CO2 capture." International Journal of Greenhouse Gas Control 40: 167-187.
    Jerndal, E., Mattisson, T. and Lyngfelt, A. (2006). "Thermal Analysis of Chemical-Looping Combustion." Chemical Engineering Research and Design 84(9): 795-806.
    Johansson, M. (2007). Screening of oxygen-carrier particles based on iron-, manganese-, copper-and nickel oxides for use in chemical-looping technologies, Chalmers University of Technology Göteborg, Sweden.
    Kashiwaya, Y. and Watanabe, M. (2012). "Kinetic analysis of the decomposition reaction of CH4 injecting into molten slag." ISIJ international 52(8): 1394-1403.
    Kolbitsch, P., Bolhàr-Nordenkampf, J., Pröll, T. and Hofbauer, H. (2010). "Operating experience with chemical looping combustion in a 120kW dual circulating fluidized bed (DCFB) unit." International Journal of Greenhouse Gas Control 4(2): 180-185.
    Ku, Y., Lin, P. H., Wu, H. C., Liu, Y. C., Tseng, Y. H. and Lee, H. Y. (2017). "Preparation of Fe2O3/Al2O3 and Fe2O3/TiO2 pellets as oxygen carrier for chemical looping process." Aerosol and Air Quality Research 17(9).
    Kunii, D. and Levenspiel, O. (2013). Fluidization engineering, Elsevier.
    Kvenvolden, K. A. (1988). "Methane hydrate — A major reservoir of carbon in the shallow geosphere?" Chemical Geology 71(1): 41-51.
    Leion, H., Mattisson, T. and Lyngfelt, A. (2009). "Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels." Energy Procedia 1(1): 447-453.
    Li, H. L., Ditaranto, M. and Berstad, D. (2011). "Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture." Energy 36(2): 1124-1133.
    Liang, M. S., Kang, W. K. and Xie, K. C. (2009). "Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique." Journal of Natural Gas Chemistry 18(1): 110-113.
    Linderholm, C., Schmitz, M., Biermann, M., Hanning, M. and Lyngfelt, A. (2017). "Chemical-looping combustion of solid fuel in a 100kW unit using sintered manganese ore as oxygen carrier." International Journal of Greenhouse Gas Control 65: 170-181.
    Luo, S. W., Zeng, L. and Fan, L. S. (2015). "Chemical looping technology: oxygen carrier characteristics." Annual review of chemical and biomolecular engineering 6: 53-75.
    M. Montañés, R., GarÐarsdóttir, S. Ó., Normann, F., Johnsson, F. and Nord, L. O. (2017). "Demonstrating load-change transient performance of a commercial-scale natural gas combined cycle power plant with post-combustion CO2 capture." International Journal of Greenhouse Gas Control 63: 158-174.
    Ma, Z., Xiao, R. and Chen, L. Y. (2017). "Kinetics of sintering induced surface area decay of iron oxide in the reduction process of chemical looping combustion." Fuel Processing Technology 168: 20-26.
    Mathekga, H., Oboirien, B. and North, B. (2016). "A review of oxy‐fuel combustion in fluidized bed reactors." International Journal of Energy Research 40(7): 878-902.
    Mattisson, T., Johansson, M. and Lyngfelt, A. (2006). "The use of NiO as an oxygen carrier in chemical-looping combustion." Fuel 85(5-6): 736-747.
    Mattisson, T., Lyngfelt, A. and Leion, H. (2009). "Chemical-looping with oxygen uncoupling for combustion of solid fuels." International Journal of Greenhouse Gas Control 3(1): 11-19.
    Matzen, M., Pinkerton, J., Wang, X. M. and Demirel, Y. (2017). "Use of natural ores as oxygen carriers in chemical looping combustion: A review." International Journal of Greenhouse Gas Control 65: 1-14.
    McCabe, W. L., Smith, J. C. and Harriott, P. (1993). Unit operations of chemical engineering, McGraw-hill New York.
    Meehl, G. A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A. X., Buja, L. E., Strand, W. G. and Teng, H. Y. (2005). "How much more global warming and sea level rise?" Science 307(5716): 1769-1772.
    Mei, D. F., Zhao, H. B. and Yan, S. P. (2018). "Kinetics model for the reduction of Fe2O3/Al2O3 by CO in Chemical Looping Combustion." Chemical Engineering and Processing - Process Intensification 124: 137-146.
    Meier, M. F., Dyurgerov, M. B., Rick, U. K., O'neel, S., Pfeffer, W. T., Anderson, R. S., Anderson, S. P. and Glazovsky, A. F. (2007). "Glaciers dominate eustatic sea-level rise in the 21st century." Science 317(5841): 1064-1067.
    Merkel, T. C., Lin, H. Q., Wei, X. T. and Baker, R. (2010). "Power plant post-combustion carbon dioxide capture: an opportunity for membranes." Journal of membrane science 359(1-2): 126-139.
    Moghtaderi, B. and Song, H. (2010). "Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion." Energy & Fuels 24(10): 5359-5368.
    Moldenhauer, P., Linderholm, C., Rydén, M. and Lyngfelt, A. (2019). "Avoiding CO 2 capture effort and cost for negative CO 2 emissions using industrial waste in chemical-looping combustion/gasification of biomass." Mitigation and Adaptation Strategies for Global Change: 1-24.
    Monazam, E., Breault, R. W. and Siriwardane, R. (2014). "Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion." Chemical Engineering Journal 242: 204-210.
    Monazam, E., W. Breault, R. and Siriwardane, R. (2014). Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion.
    Mukherjee, S., Kumar, P., Yang, A. D. and Fennell, P. (2015). "Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture." Journal of Environmental Chemical Engineering 3(3): 2104-2114.
    Naqvi, R., Wolf, J. and Bolland, O. (2007). "Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture." Energy 32(4): 360-370.
    NASA. (2018). "Global Climate Change Vital Sign of the Planet." from https://climate.nasa.gov/vital-signs/sea-level/.
    NASAGISS. (2018). "Global surface temperature change." from https://climate.nasa.gov/vital-signs/global-temperature/.
    Nikolaidis, P. and Poullikkas, A. (2017). "A comparative overview of hydrogen production processes." Renewable and Sustainable Energy Reviews 67: 597-611.
    NOAAESRL. (2018). "Atmospheric CO2 at Mauna Loa Observatory." from https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html.
    Pérez-Vega, R., Abad, A., García-Labiano, F., Gayán, P., de Diego, L. F. and Adánez, J. (2016). "Coal combustion in a 50kWth Chemical Looping Combustion unit: Seeking operating conditions to maximize CO2 capture and combustion efficiency." International Journal of Greenhouse Gas Control 50: 80-92.
    Pachauri, R. and Reisinger, A. (2008). Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report, Geneva, Switzerland: Intergovernmental Panel on Climate Change.
    Pachauri, R. K., Meyer, L., Allen, M. R., Barros, V. R. and Broome, J. (2015). Climate Change 2014 synthesis report. Copenhagen, Denmark, Intergovernmental Panel on Climate Change (IPCC).
    Padurean, A., Cormos, C.-C. and Agachi, P.-S. (2012). "Pre-combustion carbon dioxide capture by gas–liquid absorption for Integrated Gasification Combined Cycle power plants." International Journal of Greenhouse Gas Control 7: 1-11.
    Palmer, D. (2008). "Hydrogen in the Universe." NASA. Retrieved: 02-05.
    Piotrowski, K., Mondal, K., Wiltowski, T., Dydo, P. and Rizeg, G. (2007). "Topochemical approach of kinetics of the reduction of hematite to wüstite." Chemical Engineering Journal 131(1): 73-82.
    Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K. and Riga, A. (2009). "Thermogravimetric analysis (TGA)." Thermal analysis of polymers: Fundamentals and applications: 241-317.
    Qin, W., Li, Q., Dong, C., Cheng, W. and Yang, Y. (2014). CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2.
    Rana, S., Sun, Z., Mehrani, P., Hughes, R. and Macchi, A. (2019). "Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas." Applied Energy 238: 747-759.
    Ross, D. K. (2006). "Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars." Vacuum 80(10): 1084-1089.
    Rydén, M. and Lyngfelt, A. (2006). "Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion." International Journal of Hydrogen Energy 31(10): 1271-1283.
    Saunois, M., Jackson, R., Bousquet, P., Poulter, B. and Canadell, J. (2016). "The growing role of methane in anthropogenic climate change." Environmental Research Letters 11(12): 120207.
    Schmitz, M. and Linderholm, C. (2018). "Chemical looping combustion of biomass in 10- and 100-kW pilots – Analysis of conversion and lifetime using a sintered manganese ore." Fuel 231: 73-84.
    Schnellmann, M. A., Heuberger, C. F., Scott, S. A., Dennis, J. S. and Mac Dowell, N. (2018). "Quantifying the role and value of chemical looping combustion in future electricity systems via a retrosynthetic approach." International Journal of Greenhouse Gas Control 73: 1-15.
    Seinfeld, J. H. and Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons.
    Shanmugam, S. (2015). "Granulation techniques and technologies: recent progresses." BioImpacts: BI 5(1): 55.
    Shen, L. H., Wu, J. H., Gao, Z. P. and Xiao, J. (2009). "Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10kWth reactor." Combustion and Flame 156(7): 1377-1385.
    Soo, S. L. (1974). "Formation of bubbles in a fluidized bed." Powder Technology 10(4): 211-216.
    Stobbe, E. d., De Boer, B. and Geus, J. (1999). "The reduction and oxidation behaviour of manganese oxides." Catalysis Today 47(1-4): 161-167.
    Styring, P., Jansen, D., De Coninck, H., Reith, H. and Armstrong, K. (2011). Carbon Capture and Utilisation in the green economy, Centre for Low Carbon Futures New York.
    Sun, Z. K., Lu, D. Y., Hughes, R. W. and Filippou, D. (2018). "O2 uncoupling behaviour of ilmenite and manganese-modified ilmenite as oxygen carriers." Fuel Processing Technology 169: 15-23.
    Sun, Z. K., Lu, D. Y., Ridha, F. N., Hughes, R. W. and Filippou, D. (2017). "Enhanced performance of ilmenite modified by CeO2, ZrO2, NiO, and Mn2O3 as oxygen carriers in chemical looping combustion." Applied Energy 195: 303-315.
    Takenaka, S., Serizawa, M. and Otsuka, K. (2004). "Formation of filamentous carbons over supported Fe catalysts through methane decomposition." Journal of Catalysis 222(2): 520-531.
    Thomas, D. C. and Benson, S. M. (2005). Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project: Vol 1-Capture and Separation of Carbon Dioxide from Combustion, Vol 2-Geologic Storage of Carbon Dioxide with Monitoring and Verification, Elsevier.
    Tijani, M. M., Aqsha, A. and Mahinpey, N. (2017). "Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system." Energy 138: 873-882.
    Torres, D., de Llobet, S., Pinilla, J. L., Lázaro, M. J., Suelves, I. and Moliner, R. (2012). "Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor." Journal of Natural Gas Chemistry 21(4): 367-373.
    UNFCCC (2017). Preparations for the implementation of the Paris Agreement and the first session of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement 2017 United Nations Climate Change Conference, Bonn Germany.
    UNIDO (2011). Technology Roadmap: Carbon Capture and Storage in Industrial Applications, United Nations Industrial Development Organization, Organisation for Economic Development & International Energy Agency.
    Wang, B. W., Yan, R., Lee, D. H., Liang, D. T., Zheng, Y., Zhao, H. B. and Zheng, C. G. (2008). "Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas." Energy & Fuels 22(2): 1012-1020.
    Wang, T. and Stiegel, G. J. (2016). Integrated gasification combined cycle (IGCC) technologies, Woodhead Publishing.
    Wang, X., Xu, T. T., Liu, S. M., Xiao, B., Hu, Z. Q. and Chen, Z. H. (2018). "CuO supported on manganese ore as an oxygen carrier for chemical looping with oxygen uncoupling (CLOU)." Chemical Engineering Journal 343: 340-350.
    Wang, Y., Zhao, L., Otto, A., Robinius, M. and Stolten, D. (2017). "A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants." Energy Procedia 114: 650-665.
    Wen, C. Y. and Yu, Y. H. (1966). "A generalized method for predicting the minimum fluidization velocity." AIChE journal 12(3): 610-612.
    Whitty, K. J., Lighty, J. S. and Mattisson, T. (2018). "Chemical Looping with Oxygen Uncoupling (CLOU) Processes." Handbook of Chemical Looping Technology: 93-122.
    Yang, H. Q., Xu, Z. H., Fan, M. H., Gupta, R., Slimane, R. B., Bland, A. E. and Wright, I. (2008). "Progress in carbon dioxide separation and capture: A review." Journal of Environmental Sciences 20(1): 14-27.
    Zhang, Y. X., Doroodchi, E. and Moghtaderi, B. (2014). "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2." Applied Energy 113: 1916-1923.
    Zhu, M., Chen, S. Y., Ma, S. W. and Xiang, W. G. (2017). "Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process." Chemical Engineering Journal 325: 322-331.
    Zhu, M., Chen, S. Y., Soomro, A., Hu, J., Sun, Z., Ma, S. W. and Xiang, W. G. (2018). "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation." Applied Energy 225: 912-921.
    朱信、曾明宗 (1991). 煤炭氣化複循環發電機組可行性之研究. 台灣電力公司電力綜合研究所研究計劃期末報告, 工業技術研究院能源與資源研究所.
    李晉德 (2018). Effect of Hydrogen sulfide on Chemical Looping Combustion of Syngas Using Fe-based Oxygen Carrier in a Fluidized Bed Reactor, 國立成功大學環境工程學系碩士學位論文.
    梁凱鈞 (2017). Sorption of Carbon Dioxide from Oxy-fuel Combustion by Desulfurization and Water-quenched slags in a Fluidized Bed Reactor, 國立成功大學環境工程學系碩士論文.
    Abad, A., Mendiara, T., Gayán, P., García-Labiano, F., de Diego, L. F., Bueno, J. A., Pérez-Vega, R. and Adánez, J. (2017). "Comparative Evaluation of the Performance of Coal Combustion in 0.5 and 50 kWth Chemical Looping Combustion Units with Ilmenite, Redmud or Iron Ore as Oxygen Carrier." Energy Procedia 114: 285-301.
    Abdel-Wahab, A.-M., Elsherbini, A., Mohamed, O. and Nasr, O. (2017). Photocatalytic degradation of paracetamol over magnetic flower-like TiO₂/Fe₂O₃ core-shell nanostructures.
    Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P. and de Diego, L. F. (2012). "Progress in Chemical-Looping Combustion and Reforming technologies." Progress in Energy and Combustion Science 38(2): 215-282.
    Adánez-Rubio, I., Gayán, P., Abad, A., García-Labiano, F., de Diego, L. F. and Adánez, J. (2014). "Kinetic analysis of a Cu-based oxygen carrier: Relevance of temperature and oxygen partial pressure on reduction and oxidation reactions rates in Chemical Looping with Oxygen Uncoupling (CLOU)." Chemical Engineering Journal 256: 69-84.
    Adánez, J. and Abad, A. (2019). "Chemical-looping combustion: Status and research needs." Proceedings of the Combustion Institute 37(4): 4303-4317.
    Adánez, J. d., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A. and Palacios, J. (2004). "Selection of oxygen carriers for chemical-looping combustion." Energy & Fuels 18(2): 371-377.
    Ahmed, M. A., El-Katori, E. E. and Gharni, Z. H. (2013). "Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method." Journal of Alloys and Compounds 553: 19-29.
    Anthony, E. and Clough, P. (2019). Post-Combustion Carbon Capture and Storage in Industry. CO2 Separation, Purification and Conversion to Chemicals and Fuels, Springer: 39-53.
    Arrhenius, S. (1889). "Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren." Zeitschrift für physikalische Chemie 4(1): 226-248.
    Arvanitis, A., Sun, X. H., Yang, S. W., Damma, D., Smirniotis, P. and Dong, J. h. (2018). "Approaching complete CO conversion and total H2 recovery for water gas shift reaction in a high-temperature and high-pressure zeolite membrane reactor." Journal of membrane science 549: 575-580.
    Benincosa, W., Siriwardane, R., Tian, H. J. and Riley, J. (2017). "Unique phase identification of trimetallic copper iron manganese oxygen carrier using simultaneous differential scanning calorimetry/thermogravimetric analysis during chemical looping combustion reactions with methane." Applied Energy 203: 522-534.
    Blumenthal, I. (2001). "Carbon monoxide poisoning." Journal of the royal society of medicine 94(6): 270-272.
    Brdar, R. D. and Jones, R. M. (2000). "GE IGCC technology and experience with advanced gas turbines." GE Power Systems, Schenectady, NY, Paper No. GER-4207.
    Briggs, D. (1981). "Handbook of X‐ray Photoelectron Spectroscopy CD Wanger, WM Riggs, LE Davis, JF Moulder and GE Muilenberg Perkin‐Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. $195." Surface and Interface Analysis 3(4): v-v.
    Brinker, C. J. and Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing, Academic press.
    Brunauer, S., Emmett, P. H. and Teller, E. (1938). "Adsorption of gases in multimolecular layers." Journal of the American chemical society 60(2): 309-319.
    Cayan, F. N., Zhi, M. J., Pakalapati, S. R., Celik, I., Wu, N. Q. and Gemmen, R. (2008). "Effects of coal syngas impurities on anodes of solid oxide fuel cells." Journal of Power Sources 185(2): 595-602.
    Chase Jr, M. (1998). "NIST-JANAF thermochemical tables fourth edition." J. Phys. Chem. Ref. Data, Monograph 9.
    Chen, H. S., Zheng, Z., Chen, Z. W. and Bi, X. T. T. (2017). "Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study." Powder Technology 316: 410-420.
    Chen, L. Y., Bao, J. H., Kong, L., Combs, M., Nikolic, H. S., Fan, Z. and Liu, K. L. (2017). "Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion." Applied Energy 197: 40-51.
    Cheng, Z., Qin, L., Fan, J. A. and Fan, L. S. (2018). "New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems." Engineering 4(3): 343-351.
    Chiesa, P. and Consonni, S. (1999). "Shift reactors and physical absorption for low-CO2 emission IGCCs." Journal of Engineering for Gas Turbines and Power 121(2): 295-305.
    Cho, P., Mattisson, T. and Lyngfelt, A. (2005). "Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion." Industrial & Engineering Chemistry Research 44(4): 668-676.
    Cho, W. C., Kim, C. G., Jeong, S. U., Park, C. S., Kang, K. S., Lee, D. Y. and Kim, S. D. (2015). "Activation and reactivity of iron oxides as oxygen carriers for hydrogen production by chemical looping." Industrial & Engineering Chemistry Research 54(12): 3091-3100.
    Cormos, C.-C. (2017). "Chemical Looping with Oxygen Uncoupling (CLOU) concepts for high energy efficient power generation with near total fuel decarbonisation." Applied Thermal Engineering 112: 924-931.
    Costa, T. R., Gayán, P., Abad, A., García-Labiano, F., de Diego, L. F., Melo, D. M. A. and Adánez, J. (2017). "Promising Impregnated Mn-based Oxygen Carriers for Chemical Looping Combustion of Gaseous Fuels." Energy Procedia 114: 334-343.
    Council, N. R. (2004). The hydrogen economy: opportunities, costs, barriers, and R&D needs, National Academies Press.
    Crowe, C. T. (2005). Multiphase flow handbook, CRC press.
    Cuéllar-Franca, R. M. and Azapagic, A. (2015). "Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts." Journal of CO2 Utilization 9: 82-102.
    Dahl, I. M., Bakken, E., Larring, Y., Spjelkavik, A. I., Håkonsen, S. F. and Blom, R. (2009). "On the development of novel reactor concepts for chemical looping combustion." Energy Procedia 1(1): 1513-1519.
    Danks, A., Hall, S. and Schnepp, Z. (2016). "The evolution of ‘sol–gel’chemistry as a technique for materials synthesis." Materials Horizons 3(2): 91-112.
    De Jong, K. P. (2009). Synthesis of solid catalysts, John Wiley & Sons.
    Den Hoed, P. and Luckos, A. (2011). "Oxidation and reduction of iron-titanium oxides in chemical looping combustion: a phase-chemical description." Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 66(2): 249-263.
    El Hadri, N., Quang, D. V., Goetheer, E. L. V. and Abu Zahra, M. R. M. (2017). "Aqueous amine solution characterization for post-combustion CO2 capture process." Applied Energy 185: 1433-1449.
    Ergun, S. (1952). "Fluid flow through packed columns." Chem. Eng. Prog. 48: 89-94.
    Ernst, A. and Zibrak, J. D. (1998). "Carbon Monoxide Poisoning." New England Journal of Medicine 339(22): 1603-1608.
    Evdou, A., Zaspalis, V. and Nalbandian, L. (2016). "Ferrites as redox catalysts for chemical looping processes." Fuel 165: 367-378.
    Fagerlund, G. (1973). "Determination of specific surface by the BET method." Matériaux et Construction 6(3): 239-245.
    Fan, Y. Y., Siriwardane, R. and Tian, H. J. (2015). "Trimetallic oxygen carriers CuFeMnO4, CuFeMn2O4, and CuFe0. 5Mn1. 5O4 for chemical looping combustion." Energy & Fuels 29(10): 6616-6624.
    Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R. D. (2008). "Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program." International Journal of Greenhouse Gas Control 2(1): 9-20.
    Fogler, H. S. (1999). Elements of chemical reaction engineering, Third edition. Upper Saddle River, N.J. : Prentice Hall PTR, [1999] ©1999.
    Fogler, H. S. (2010). Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi, Pearson Education.
    Forzatti, P. and Lietti, L. (1999). "Catalyst deactivation." Catalysis Today 52(2): 165-181.
    Fujiki, J., Chowdhury, F. A., Yamada, H. and Yogo, K. (2017). "Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent." Chemical Engineering Journal 307: 273-282.
    Garba, Z. N. and Galadima, A. (2018). Carbon Capture and Storage (CCS) Technology: Challenges to Implementation. Reference Module in Materials Science and Materials Engineering, Elsevier.
    García-Díez, E., García-Labiano, F., de Diego, L. F., Abad, A., Gayán, P., Adánez, J. and Ruíz, J. A. C. (2017). "Steam, dry, and steam-dry chemical looping reforming of diesel fuel in a 1kWth unit." Chemical Engineering Journal 325: 369-377.
    García-Labiano, F., de Diego, L. F., Adánez, J., Abad, A. and Gayán, P. (2005). "Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system." Chemical Engineering Science 60(3): 851-862.
    García-Muñoz, P., Pliego, G., Zazo, J. A., Barbero, B., Bahamonde, A. and Casas, J. A. (2017). "Modified ilmenite as catalyst for CWPO-Photoassisted process under LED light." Chemical Engineering Journal 318: 89-94.
    Ge, H. J., Shen, L. H., Gu, H. M. and Jiang, S. X. (2015). "Effect of co-precipitation and impregnation on K-decorated Fe2O3/Al2O3 oxygen carrier in Chemical Looping Combustion of bituminous coal." Chemical Engineering Journal 262: 1065-1076.
    Geldart, D. (1973). "Types of gas fluidization." Powder Technology 7(5): 285-292.
    Giordano, L., Roizard, D. and Favre, E. (2018). "Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes." International Journal of Greenhouse Gas Control 68: 146-163.
    Global-CCS-Institute (2018). The Global Status of CCS: 2017, Global CCS Institute.
    Goldstein, M. (2008). "Carbon Monoxide Poisoning." Journal of Emergency Nursing 34(6): 538-542.
    Goroshko, V., Rozenbaum, R. and Todes, O. (1958). "Approximate laws of fluidized bed hydraulics and restrained fall." Izv. Vyssh. Uchebn. Zaved. Neft Gaz, No. i 125.
    Grenoble, D., Estadt, M. and Ollis, D. (1981). "The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts." Journal of Catalysis 67(1): 90-102.
    Harries, J. E., Brindley, H. E., Sagoo, P. J. and Bantges, R. J. (2001). "Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997." Nature 410(6826): 355.
    Harvey, D. (2000). Modern analytical chemistry, Boston: McGraw-Hill Companies, Inc.
    Hayes, P. and Jak, E. (2014). Chapter 1.1 - Introduction to Metallurgical Processing. Treatise on Process Metallurgy. S. Seetharaman. Boston, Elsevier: 15-42.
    Hossain, M. M. and de Lasa, H. I. (2008). "Chemical-looping combustion (CLC) for inherent CO2 separations—a review." Chemical Engineering Science 63(18): 4433-4451.
    Huang, Z., He, F., Zhu, H. Q., Chen, D. Z., Zhao, K., Wei, G. Q., Feng, Y. P., Zheng, A. Q., Zhao, Z. L. and Li, H. B. (2015). "Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier." Applied Energy 157: 546-553.
    Ibrahim, A. A., Fakeeha, A. H., Al-Fatesh, A. S., Abasaeed, A. E. and Khan, W. U. (2015). "Methane decomposition over iron catalyst for hydrogen production." International Journal of Hydrogen Energy 40(24): 7593-7600.
    IEA (2018). Global Energy & CO2 Status Report, International Energy Agency (IEA).
    IEA (2018). World energy outllok 2018, International Energy Agency (IEA).
    Ilavsky, J. and Bena, J. (1967). "Determination of minimum fluidization velocity of polydispersed materials (2)." Chemické Zvesti 21(12): 877-&.
    Imtiaz, Q., Hosseini, D. and Müller, C. R. (2013). "Review of oxygen carriers for chemical looping with oxygen uncoupling (CLOU): thermodynamics, material development, and synthesis." Energy Technology 1(11): 633-647.
    Ishida, M. and Jin, H. G. (1996). "A novel chemical-looping combustor without NOx formation." Industrial & Engineering Chemistry Research 35(7): 2469-2472.
    Jansen, D., Gazzani, M., Manzolini, G., Dijk, E. v. and Carbo, M. (2015). "Pre-combustion CO2 capture." International Journal of Greenhouse Gas Control 40: 167-187.
    Jerndal, E., Mattisson, T. and Lyngfelt, A. (2006). "Thermal Analysis of Chemical-Looping Combustion." Chemical Engineering Research and Design 84(9): 795-806.
    Johansson, M. (2007). Screening of oxygen-carrier particles based on iron-, manganese-, copper-and nickel oxides for use in chemical-looping technologies, Chalmers University of Technology Göteborg, Sweden.
    Kashiwaya, Y. and Watanabe, M. (2012). "Kinetic analysis of the decomposition reaction of CH4 injecting into molten slag." ISIJ international 52(8): 1394-1403.
    Kolbitsch, P., Bolhàr-Nordenkampf, J., Pröll, T. and Hofbauer, H. (2010). "Operating experience with chemical looping combustion in a 120kW dual circulating fluidized bed (DCFB) unit." International Journal of Greenhouse Gas Control 4(2): 180-185.
    Ku, Y., Lin, P. H., Wu, H. C., Liu, Y. C., Tseng, Y. H. and Lee, H. Y. (2017). "Preparation of Fe2O3/Al2O3 and Fe2O3/TiO2 pellets as oxygen carrier for chemical looping process." Aerosol and Air Quality Research 17(9).
    Kunii, D. and Levenspiel, O. (2013). Fluidization engineering, Elsevier.
    Kvenvolden, K. A. (1988). "Methane hydrate — A major reservoir of carbon in the shallow geosphere?" Chemical Geology 71(1): 41-51.
    Leion, H., Mattisson, T. and Lyngfelt, A. (2009). "Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels." Energy Procedia 1(1): 447-453.
    Li, H. L., Ditaranto, M. and Berstad, D. (2011). "Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture." Energy 36(2): 1124-1133.
    Liang, M. S., Kang, W. K. and Xie, K. C. (2009). "Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique." Journal of Natural Gas Chemistry 18(1): 110-113.
    Linderholm, C., Schmitz, M., Biermann, M., Hanning, M. and Lyngfelt, A. (2017). "Chemical-looping combustion of solid fuel in a 100kW unit using sintered manganese ore as oxygen carrier." International Journal of Greenhouse Gas Control 65: 170-181.
    Luo, S. W., Zeng, L. and Fan, L. S. (2015). "Chemical looping technology: oxygen carrier characteristics." Annual review of chemical and biomolecular engineering 6: 53-75.
    M. Montañés, R., GarÐarsdóttir, S. Ó., Normann, F., Johnsson, F. and Nord, L. O. (2017). "Demonstrating load-change transient performance of a commercial-scale natural gas combined cycle power plant with post-combustion CO2 capture." International Journal of Greenhouse Gas Control 63: 158-174.
    Ma, Z., Xiao, R. and Chen, L. Y. (2017). "Kinetics of sintering induced surface area decay of iron oxide in the reduction process of chemical looping combustion." Fuel Processing Technology 168: 20-26.
    Mathekga, H., Oboirien, B. and North, B. (2016). "A review of oxy‐fuel combustion in fluidized bed reactors." International Journal of Energy Research 40(7): 878-902.
    Mattisson, T., Johansson, M. and Lyngfelt, A. (2006). "The use of NiO as an oxygen carrier in chemical-looping combustion." Fuel 85(5-6): 736-747.
    Mattisson, T., Lyngfelt, A. and Leion, H. (2009). "Chemical-looping with oxygen uncoupling for combustion of solid fuels." International Journal of Greenhouse Gas Control 3(1): 11-19.
    Matzen, M., Pinkerton, J., Wang, X. M. and Demirel, Y. (2017). "Use of natural ores as oxygen carriers in chemical looping combustion: A review." International Journal of Greenhouse Gas Control 65: 1-14.
    McCabe, W. L., Smith, J. C. and Harriott, P. (1993). Unit operations of chemical engineering, McGraw-hill New York.
    Meehl, G. A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A. X., Buja, L. E., Strand, W. G. and Teng, H. Y. (2005). "How much more global warming and sea level rise?" Science 307(5716): 1769-1772.
    Mei, D. F., Zhao, H. B. and Yan, S. P. (2018). "Kinetics model for the reduction of Fe2O3/Al2O3 by CO in Chemical Looping Combustion." Chemical Engineering and Processing - Process Intensification 124: 137-146.
    Meier, M. F., Dyurgerov, M. B., Rick, U. K., O'neel, S., Pfeffer, W. T., Anderson, R. S., Anderson, S. P. and Glazovsky, A. F. (2007). "Glaciers dominate eustatic sea-level rise in the 21st century." Science 317(5841): 1064-1067.
    Merkel, T. C., Lin, H. Q., Wei, X. T. and Baker, R. (2010). "Power plant post-combustion carbon dioxide capture: an opportunity for membranes." Journal of membrane science 359(1-2): 126-139.
    Moghtaderi, B. and Song, H. (2010). "Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion." Energy & Fuels 24(10): 5359-5368.
    Moldenhauer, P., Linderholm, C., Rydén, M. and Lyngfelt, A. (2019). "Avoiding CO 2 capture effort and cost for negative CO 2 emissions using industrial waste in chemical-looping combustion/gasification of biomass." Mitigation and Adaptation Strategies for Global Change: 1-24.
    Monazam, E., Breault, R. W. and Siriwardane, R. (2014). "Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion." Chemical Engineering Journal 242: 204-210.
    Monazam, E., W. Breault, R. and Siriwardane, R. (2014). Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion.
    Mukherjee, S., Kumar, P., Yang, A. D. and Fennell, P. (2015). "Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture." Journal of Environmental Chemical Engineering 3(3): 2104-2114.
    Naqvi, R., Wolf, J. and Bolland, O. (2007). "Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture." Energy 32(4): 360-370.
    NASA. (2018). "Global Climate Change Vital Sign of the Planet." from https://climate.nasa.gov/vital-signs/sea-level/.
    NASAGISS. (2018). "Global surface temperature change." from https://climate.nasa.gov/vital-signs/global-temperature/.
    Nikolaidis, P. and Poullikkas, A. (2017). "A comparative overview of hydrogen production processes." Renewable and Sustainable Energy Reviews 67: 597-611.
    NOAAESRL. (2018). "Atmospheric CO2 at Mauna Loa Observatory." from https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html.
    Pérez-Vega, R., Abad, A., García-Labiano, F., Gayán, P., de Diego, L. F. and Adánez, J. (2016). "Coal combustion in a 50kWth Chemical Looping Combustion unit: Seeking operating conditions to maximize CO2 capture and combustion efficiency." International Journal of Greenhouse Gas Control 50: 80-92.
    Pachauri, R. and Reisinger, A. (2008). Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report, Geneva, Switzerland: Intergovernmental Panel on Climate Change.
    Pachauri, R. K., Meyer, L., Allen, M. R., Barros, V. R. and Broome, J. (2015). Climate Change 2014 synthesis report. Copenhagen, Denmark, Intergovernmental Panel on Climate Change (IPCC).
    Padurean, A., Cormos, C.-C. and Agachi, P.-S. (2012). "Pre-combustion carbon dioxide capture by gas–liquid absorption for Integrated Gasification Combined Cycle power plants." International Journal of Greenhouse Gas Control 7: 1-11.
    Palmer, D. (2008). "Hydrogen in the Universe." NASA. Retrieved: 02-05.
    Piotrowski, K., Mondal, K., Wiltowski, T., Dydo, P. and Rizeg, G. (2007). "Topochemical approach of kinetics of the reduction of hematite to wüstite." Chemical Engineering Journal 131(1): 73-82.
    Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K. and Riga, A. (2009). "Thermogravimetric analysis (TGA)." Thermal analysis of polymers: Fundamentals and applications: 241-317.
    Qin, W., Li, Q., Dong, C., Cheng, W. and Yang, Y. (2014). CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2.
    Rana, S., Sun, Z., Mehrani, P., Hughes, R. and Macchi, A. (2019). "Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas." Applied Energy 238: 747-759.
    Ross, D. K. (2006). "Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars." Vacuum 80(10): 1084-1089.
    Rydén, M. and Lyngfelt, A. (2006). "Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion." International Journal of Hydrogen Energy 31(10): 1271-1283.
    Saunois, M., Jackson, R., Bousquet, P., Poulter, B. and Canadell, J. (2016). "The growing role of methane in anthropogenic climate change." Environmental Research Letters 11(12): 120207.
    Schmitz, M. and Linderholm, C. (2018). "Chemical looping combustion of biomass in 10- and 100-kW pilots – Analysis of conversion and lifetime using a sintered manganese ore." Fuel 231: 73-84.
    Schnellmann, M. A., Heuberger, C. F., Scott, S. A., Dennis, J. S. and Mac Dowell, N. (2018). "Quantifying the role and value of chemical looping combustion in future electricity systems via a retrosynthetic approach." International Journal of Greenhouse Gas Control 73: 1-15.
    Seinfeld, J. H. and Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons.
    Shanmugam, S. (2015). "Granulation techniques and technologies: recent progresses." BioImpacts: BI 5(1): 55.
    Shen, L. H., Wu, J. H., Gao, Z. P. and Xiao, J. (2009). "Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10kWth reactor." Combustion and Flame 156(7): 1377-1385.
    Soo, S. L. (1974). "Formation of bubbles in a fluidized bed." Powder Technology 10(4): 211-216.
    Stobbe, E. d., De Boer, B. and Geus, J. (1999). "The reduction and oxidation behaviour of manganese oxides." Catalysis Today 47(1-4): 161-167.
    Styring, P., Jansen, D., De Coninck, H., Reith, H. and Armstrong, K. (2011). Carbon Capture and Utilisation in the green economy, Centre for Low Carbon Futures New York.
    Sun, Z. K., Lu, D. Y., Hughes, R. W. and Filippou, D. (2018). "O2 uncoupling behaviour of ilmenite and manganese-modified ilmenite as oxygen carriers." Fuel Processing Technology 169: 15-23.
    Sun, Z. K., Lu, D. Y., Ridha, F. N., Hughes, R. W. and Filippou, D. (2017). "Enhanced performance of ilmenite modified by CeO2, ZrO2, NiO, and Mn2O3 as oxygen carriers in chemical looping combustion." Applied Energy 195: 303-315.
    Takenaka, S., Serizawa, M. and Otsuka, K. (2004). "Formation of filamentous carbons over supported Fe catalysts through methane decomposition." Journal of Catalysis 222(2): 520-531.
    Thomas, D. C. and Benson, S. M. (2005). Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project: Vol 1-Capture and Separation of Carbon Dioxide from Combustion, Vol 2-Geologic Storage of Carbon Dioxide with Monitoring and Verification, Elsevier.
    Tijani, M. M., Aqsha, A. and Mahinpey, N. (2017). "Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system." Energy 138: 873-882.
    Torres, D., de Llobet, S., Pinilla, J. L., Lázaro, M. J., Suelves, I. and Moliner, R. (2012). "Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor." Journal of Natural Gas Chemistry 21(4): 367-373.
    UNFCCC (2017). Preparations for the implementation of the Paris Agreement and the first session of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement 2017 United Nations Climate Change Conference, Bonn Germany.
    UNIDO (2011). Technology Roadmap: Carbon Capture and Storage in Industrial Applications, United Nations Industrial Development Organization, Organisation for Economic Development & International Energy Agency.
    Wang, B. W., Yan, R., Lee, D. H., Liang, D. T., Zheng, Y., Zhao, H. B. and Zheng, C. G. (2008). "Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas." Energy & Fuels 22(2): 1012-1020.
    Wang, T. and Stiegel, G. J. (2016). Integrated gasification combined cycle (IGCC) technologies, Woodhead Publishing.
    Wang, X., Xu, T. T., Liu, S. M., Xiao, B., Hu, Z. Q. and Chen, Z. H. (2018). "CuO supported on manganese ore as an oxygen carrier for chemical looping with oxygen uncoupling (CLOU)." Chemical Engineering Journal 343: 340-350.
    Wang, Y., Zhao, L., Otto, A., Robinius, M. and Stolten, D. (2017). "A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants." Energy Procedia 114: 650-665.
    Wen, C. Y. and Yu, Y. H. (1966). "A generalized method for predicting the minimum fluidization velocity." AIChE journal 12(3): 610-612.
    Whitty, K. J., Lighty, J. S. and Mattisson, T. (2018). "Chemical Looping with Oxygen Uncoupling (CLOU) Processes." Handbook of Chemical Looping Technology: 93-122.
    Yang, H. Q., Xu, Z. H., Fan, M. H., Gupta, R., Slimane, R. B., Bland, A. E. and Wright, I. (2008). "Progress in carbon dioxide separation and capture: A review." Journal of Environmental Sciences 20(1): 14-27.
    Zhang, Y. X., Doroodchi, E. and Moghtaderi, B. (2014). "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2." Applied Energy 113: 1916-1923.
    Zhu, M., Chen, S. Y., Ma, S. W. and Xiang, W. G. (2017). "Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process." Chemical Engineering Journal 325: 322-331.
    Zhu, M., Chen, S. Y., Soomro, A., Hu, J., Sun, Z., Ma, S. W. and Xiang, W. G. (2018). "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation." Applied Energy 225: 912-921.
    朱信、曾明宗 (1991). 煤炭氣化複循環發電機組可行性之研究. 台灣電力公司電力綜合研究所研究計劃期末報告, 工業技術研究院能源與資源研究所.
    李晉德 (2018). Effect of Hydrogen sulfide on Chemical Looping Combustion of Syngas Using Fe-based Oxygen Carrier in a Fluidized Bed Reactor, 國立成功大學環境工程學系碩士學位論文.
    梁凱鈞 (2017). Sorption of Carbon Dioxide from Oxy-fuel Combustion by Desulfurization and Water-quenched slags in a Fluidized Bed Reactor, 國立成功大學環境工程學系碩士論文.
    經濟部能源局 (2018). 全國電力資源供需報告 台灣.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE