簡易檢索 / 詳目顯示

研究生: 畢永葳
Pi, Yung-Wei
論文名稱: 考量真空腔渦電流影響下之mini-Tokamak中心螺線管電流之設計
Design of the Central Solenoid Current Profile for the mini-Tokamak Including the Effects of Eddy Currents in the Vacuum-Vessel Wall
指導教授: 張博宇
Chang, Po-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 232
中文關鍵詞: 托克馬克磁約束核融合渦電流電漿擊穿
外文關鍵詞: Tokamak, Magnetic confinement fusion, Eddy current, Plasma breakdown
相關次數: 點閱:21下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在設計 mini-Tokamak 的中心螺線管電流波形,以產生電漿擊穿所需的環形迴路電壓,並進一步驅動電漿電流至 10 kA,同時將電漿加熱至 10 eV。隨時間變化的中心螺線管電流會在真空腔的內外壁中誘發渦電流,而這些渦電流將影響迴路電壓。為此,我們建立了一套數值模型,可用來計算托克馬克各組件的電阻與電感,並求得真空腔壁中感應的渦電流及其對迴路電壓的影響。模擬結果顯示,渦電流在初期會抑制迴路電壓,但其效應將迅速衰減,在 0.5 ms 後影響降至 5% 以下。因此,中心螺線管電流的作用時間應超過 0.5 ms,以降低渦電流干擾。此外,我們建立了一個模型,用以計算電漿電流與溫度在歐姆加熱下的變化。電漿電阻採用新古典理論計算,而電離率則使用一套混合模型求得,此模型結合經驗公式與 ADAS 資料庫中的係數,可描述從弱電離狀態至完全電離過程中的電離行為。為在粒子密度 n = 10¹⁷ m⁻³(對應氣壓約 10⁻⁵ Torr)且磁力線連接長度為 500 m的條件下實現擊穿,所需的環形迴路電壓約為 0.046 V。在此條件下,中心螺線管的電流變化率需大於 289 A/ms。為使 mini-Tokamak(主半徑 85 mm、短半徑 55 mm、橢圓延展率 κ = 1.82)中的電漿溫度達到 10 eV,中心螺線管電流應先於 10 ms 內線性由 5.4 kA 降至 0 kA,再於接續 40 ms 內由 0 kA 緩降至 −1.5 kA。在不考慮粒子流失及其所造成的能量流失的條件下,此中心螺線管電流波形可使電漿溫度在 40 ms 內維持於 10 eV。

    This thesis presents the design of the central solenoid current profile of the mini-Tokamak to generate the toroidal loop voltage required for plasma breakdown and to subsequently drive the plasma current to 10 kA and heat the plasma to 10 eV. The time-varying current induces eddy currents in the inner and outer vacuum-vessel walls, which in turn affect the loop voltage. A numerical model is developed to compute the resistance and inductance of the tokamak components, the induced eddy currents and the loop voltage, with the effects of eddy currents in the vacuum-vessel wall included. The calculations show that eddy currents initially suppress the loop voltage but decay rapidly, with their influence reducing to below 5% after 0.5 ms. Consequently, the solenoid current should be maintained longer than 0.5 ms to minimize eddy current effects. In addition, a time-dependent plasma model is constructed to calculate plasma current and temperature evolution due to Ohmic heating. Plasma resistance is calculated based on neoclassical resistivity, and the ionization fraction is obtained using a hybrid model that combines collisional model from empirical formula with coefficients from the ADAS database. This formulation enables estimation of ionization behavior from the initial weakly ionized state to a fully ionized plasma. To achieve breakdown at a particle density of n = 1017 m−3 (corresponding to a pressure of 10−5 Torr) with a connection length of 500 m, a loop voltage of approximately 0.046 V is required. Under these conditions, the central solenoid current change rate must exceed 289 A/ms. Furthermore, to achieve a plasma temperature of 10 eV in the mini-Tokamak with a major radius of 85 mm, minor radius of 55 mm, and elongation κ = 1.82, the central solenoid current should decrease linearly from 5.4 kA to 0 kA in 10 ms, followed by a ramp from 0 kA to –1.5 kA in 40 ms. When the particle losses and the corresponding energy losses are neglected, the plasma temperature can be maintained at 10 eV for 40 ms.

    1. Introduction 10 1.1. Nuclear fusion 11 1.1.1. Inertial confinement fusion (ICF) 11 1.1.2. Magnetic confinement fusion (MCF) 12 1.2. Motivation for developing the mini-Tokamak 14 1.3. The goal of this thesis 14 2. mini-Tokamak specification 16 3. Calculation of the eddy currents in the inner and outer vacuum-vessel walls 18 3.1. The full circuit equation 18 3.2. Conjugate gradient (CG) method 22 3.3. Components defined in the calculation 33 3.4. Calculation of inductance and resistance of each component 35 3.4.1. Calculation of resistance 35 3.4.2. Calculation of self-inductance 38 3.4.3. Calculation of mutual inductance 40 3.5. Calculated results of the eddy currents in the vacuum-vessel walls 45 3.6. Conclusion 48 4. Calculation of required loop voltage for breakdown 49 4.1. Breakdown voltage for plasma generation 49 4.2. The required rate of change of central solenoid current 56 4.3. Calculation of the eddy currents 60 4.4. Calculation of the exact induced loop voltage 61 4.5. Discussion 64 4.6. Conclusion 66 5. Calculation of the evolution of plasma parameters 67 5.1. Calculation of plasma parameters 69 5.1.1. Calculation of plasma density 70 5.1.2. Calculation of plasma temperature 77 5.1.3. Government equations for calculating plasma parameters 79 5.2. Calculation of the plasma current 79 5.3. Sensitivity test of the program to the initial temperature 85 5.4. Neoclassical resistivity 88 5.5. Calculation results 96 5.6. Discussion 101 5.7. Conclusion 105 6. Future work 107 7. Conclusion 109 Reference 112 A Appendix 114 A.1 Gyro radius calculation 114 A.2 mini-Tokamak equilibrium 117 A.2.1 Equilibrium theory 117 A.2.2 Equilibrium calculation 118 A.2.3 Effect of αm and αn on current and safety factor profile 122 A.3 Magnetic ripples from PWM signal 125 A.3.1 PWM-induced magnetic ripples 125 A.3.2 Conclusion 136 A.4 mini-Tokamak components setup code 137 A.5 Value of Q0 for mutual inductance between solenoid and ring coil (Table 27 in page 115 of Ref [10]) 145 A.6 Value of f for mutual inductance between ring coils. (Table 13 in page 79 of Ref [10]) 146 A.7 Value of f for mutual inductance between ring coils. (Table 14 in page 81 of Ref [10]) 148 A.8 Value of f for mutual inductance between ring coils. (Table 15 in page 82 of Ref [10]) 149 A.9 Value of f for mutual inductance between ring coils. (Table 16 in page 83 of Ref [10]) 150 A.10 Value of f for mutual inductance between ring coils. (Table 17 in page 84 of Ref [10]) 151 A.11 Resistance and inductance calculation code 152 A.12 Eddy current calculation code 168 A.13 Loop voltage calculation code 173 A.14 Plasma parameters calculation code 184 A.15 Formosa Integrated Research Spherical Tokamak (FIRST) 205 A.15.1 Specification 205 A.15.2 Required loop voltage for breakdown 207 A.15.3 Plasma parameters 213 A.15.4 Conclusion 219 A.16 Formosa Integrated Research Spherical Tokamak (FIRST) 220

    [1] Sarang. Proton–Proton Chain Reaction, Wikimedia Commons, 2016. https://en.wikipedia.org/wiki/Nuclear_fusion#/media/File:Fusion_in_the_Sun.svg.
    [2] Wykis. Deuterium–tritium Fusion Reaction [Image], Wikimedia Commons, 2007. https://commons.wikimedia.org/wiki/File:Deuterium-tritium_fusion.svg.
    [3] ChemConnections. Stages of the Inertial Confinement Fusion Process [Image]. https://chemconnections.org/crystals/icf.html.
    [4] U.S. Department of Energy. Magnetic field structure in a tokamak [Image]. https://www.energy.gov/science/doe-explainstokamaks.
    [5] Zhe Gao. Comparison of spherical tokamak to standard tokamak [Image], Matter and Radiation at Extremes, 1(3):153–162, June 2016. Fig. 1(a).
    [6] Po-Yu Chang. 國科會磁約束高溫電漿計畫-子計畫一執行情形.
    [7] H.-T. Kim et al. Development of full electromagnetic plasma burn-through model and validation in MAST. Nuclear Fusion, 62, 126012 (2022).
    [8] Fluid Mechanics 101. Conjugate Gradient [Video]. YouTube, 2023. https://www.youtube.com/watch?v=MdPhVsgTc1Q.
    [9] O. Alexandrov. Conjugate gradient path [Image], Wikimedia Commons, 2007. https://en.wikipedia.org/wiki/Conjugate_gradient_method#/media/File:Conjugate_gradient_illustration.svg.
    [10] F. W. Grover, Inductance Calculations: Working Formulas and Tables. New York: D. Van Nostrand Company, 1946.
    [11] MathWorks. Preconditioned Conjugate Gradient (pcg) – Solve system of linear equations. https://www.mathworks.com/help/matlab/ref/pcg.html.
    [12] OpenStax. Solenoid self-inductance. Electricity and Magnetism – Section 14.3: Self-Inductance and Inductors. https://phys.libretexts.org.
    [13] Dougsim. Visualization of Townsend Avalanche [Image]. Wikimedia Commons, 2012. https://commons.wikimedia.org/wiki/File:Electron_avalanche.gif.
    [14] A Fridman, A Chirokov and A Gutsol. Non-thermal atmospheric pressure discharges. Journal of Physics D: Applied Physics, 38, January 2005.
    [15] H.-T. Kim et al. Enhancement of plasma burn-through simulation and validation in JET. Nuclear Fusion, 52, 2012.
    [16] F. Trintchouk et al. Measurement of the transverse Spitzer resistivity during collisional magnetic reconnection. Physics of Plasmas, 10, 2003.
    [17] ADAS – Atomic Data and Analysis Structure, ADAS. https://open.adas.ac.uk/.
    [18] NEOS Development Team. NEOS: Open-source neoclassical transport code. https://gitlab.epfl.ch/spc/public/NEOS.
    [19] FreeGS. Free-boundary Grad–Shafranov solver for plasma equilibrium reconstruction. https://github.com/freegs-plasma/freegs.
    [20] COMSOL. Simulate real-world designs, devices, and processes with multiphysics software from comsol. https://www.comsol.com/.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE