簡易檢索 / 詳目顯示

研究生: 蘇郁翔
Su, Yu-Xiang
論文名稱: 基於方向均化梯度權重直方圖之移動物偵測
Moving Object Detection Based on Weighted Histogram of Oriented Uniform Gradient
指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 56
中文關鍵詞: 移動物偵測方向梯度直方圖方向均化梯度權重直方圖支持向量機
外文關鍵詞: Moving object detection, Histogram of oriented gradient, Weighted histogram of oriented uniform gradient, Support vector machine
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著車用電子科技的進步,先進駕駛輔助系統變得越來越重要,特別是移動物偵測在先進駕駛輔助系統中扮演著重要角色。在一般市區道路上,移動物主要可以分為行人、機車、腳踏車和汽車這四個物件。在實際應用中,移動物偵測系統存在兩個嚴峻的挑戰:需要大量的計算時間和精確的偵測率。因此,為了克服這些問題,我們提出了一個新穎的移動物偵測系統,其中包含了預處理、特徵擷取、分類和狀態機。在預處理中,利用跳過低繁忙點的偵測視窗,能夠有效提升計算時間以解決上述提及之問題。另外,為了提升偵測率,我們提出了基於方向均化梯度權重直方圖法結合支持向量機。除此之外,我們還使用狀態機能以更進一步提升系統的強健性。最後,在實驗結果方面,利用我們所錄製的市區測試影片,將本論文所提出的統和原本方向均化梯度直方圖之系統進行比較,實驗證明,我們提出的系統相較於舊有系統有更好的偵測效果,也能夠達到即時偵測來以提醒駕駛者前方有移動物。

    With the growth of the automotive electronics technology, the advanced driver assistance system (ADAS) becomes more and more important. Especially, the moving object detection (MOD) is an important issue in the ADAS. There are four important moving objects, pedestrian, scooter, bicycle and car in normal urban roads. In realistic systems, there exist two critical challenges including computing time and detection rate for MOD. To overcome these problems, we propose a novel moving object detection system which contains pre-processing, feature extraction, classification and state machine. The pre-processing, skipping low busyness windows, accelerates the computing time to solve the mentioned problem. Additionally, the weighted histogram of oriented uniform gradient (WHOUG) with support vector machine (SVM) is proposed to promote the detection accuracy. Besides, the finite state machine could further improve the robustness of the proposed system. In experimental results, the proposed system is compared to the original HOG system for testing self-collected urban videos. The results demonstrate that the proposed system achieves better performance and real-time detection than the traditional one.

    摘 要 I Abstract II 誌 謝 III Contents IV List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1. Research Background 1 1.2. Motivations 3 1.3. Literature Reviews 3 1.4. Organization of Thesis 6 Chapter 2 Related Work 8 2.1. Feature Extraction 8 2.1.1. Haar-like feature 9 2.1.2. Local Binary Pattern 11 2.1.3. Histogram of Oriented Gradient 12 2.2. Support Vector Machine 15 2.3. Kalman Filter 17 Chapter 3 The Proposed System 20 3.1. Pre-processing 21 3.1.1. Grayscale transformation 22 3.1.2. Region of Interest Selection 23 3.1.3. Skipping Low Busyness Windows 24 3.2. Weighted Histogram of Oriented Uniform Gradient 27 3.2.1. Uniform Gradient Estimation 28 3.2.2. WHOUG Feature Extraction 28 3.3. State Machine 32 Chapter 4 Experimental Results 35 4.1. Environment and Database Training of Experiments 35 4.2. Weight Decision 38 4.2.1. Weight for WHOUG-1 38 4.2.2. Weight for WHOUG-2 39 4.3. Comparison with Different Methods 40 4.4. Comparison of Computing Time 47 4.5. INRIA Person Database 48 Chapter 5 Conclusions 51 Chapter 6 Future Work 52 References 53

    [1] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
    [2] P. Viola and M. J. Jones, “Rapid object detection using a boosted cascade of simple features,” Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-I, 2001.
    [3] N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection,” Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886-893, 2005
    [4] S. Paisitkriangkrai, C. Shen and J. Zhang, “Fast pedestrian detection using a cascade of boosted covariance features,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 8, pp. 1140-1151, 2008.
    [5] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,” Proc. of IEEE Conference on Computer Vision, pp. 555-562. 1998.
    [6] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object detection,” Proc. of IEEE International Conference on Image Processing, vol. 1, pp. I-I, 2002.
    [7] D. M. Gavrila and V. Philomin, “Real-time object detection for "smart" vehicles,” Proc. of IEEE International Conference on Computer Vision, vol. 1, pp. 87-93, 1999.
    [8] G. Borgefors, “Distance transformations in digital images,” Computer Vision, Graphics, and Image Processing, vol. 34, no. 3, pp. 344-371, 1986.
    [9] D. M. Gavrila, “A bayesian, exemplar-based approach to hierarchical shape matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 8, pp. 1408-1421, 2007.
    [10] D. T. Nguyen, W. Li and P. Ogunbona, “A part-based template matching method for multi-view human detection,” Proc. of IEEE International Conference on Image and Vision Computing, New Zealand, pp. 357-362, 2009.
    [11] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in images by components,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349-361, 2001.
    [12] B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors,” Proc. of IEEE International Conference on Computer Vision, vol. 1, pp. 90-97, 2005.
    [13] Q. Zhu, M. C. Yeh and K. T. Cheng, “Fast human detection using a cascade of histograms of oriented gradients,” Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1491-1498, 2006.
    [14] Y. T. Chen and C. S. Chen, “A cascade of feed-forward classifiers for fast pedestrian detection,” Proc. of Asian Conference on Computer Vision, pp. 905-914, 2007.
    [15] B. Leibe, E. Seemann and B. Schiele, “Pedestrian detection in crowded scenes,” Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 878-885, 2005.
    [16] S. Belongie and J. Malik, “Matching with shape contexts,” Proc. of IEEE Workshop on Content-based Access of Image and Video Libraries, vol. 1, pp. 20-26, 2000.
    [17] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns of motion and appearance,” Proc. of Ninth IEEE International Conference on Computer Vision, pp. 734, 2003.
    [18] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning and an application to boosting,” Proc. of European Conference on Computational Learning theory, Springer Berlin Heidelberg, pp. 23-37, 1995.
    [19] J. Man, and B. Bhanu, “Individual recognition using gait energy image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp. 316-322, 2006.
    [20] S. A. Niyogi and E. H. Adelson, “Analyzing and recognizing walking figures in XYT,” Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 94, pp. 469-474, 1994.
    [21] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns of motion and appearance,” International Journal of Computer Vision, vol. 63, no. 2, pp. 153-161, 2005.
    [22] T. Ojala, M. Pietikainen and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,” Proc. of IEEE International Conference on Pattern Recognition, vol. 1, pp. 582-585, 1994.
    [23] D. G. Lowe, “Object recognition from local scale-invariant features,” Proc. of IEEE International Conference on Computer Vision, vol. 2, pp. 1150-1157. 1999.
    [24] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
    [25] I. P. Alonso, D. F. Llorca, M. Á.Sotelo, L. M. Bergasa and P. R. Toro, “Combination of feature extraction methods for SVM pedestrian detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 292-307, 2007.
    [26] G. Bishop and G. Welch, “An Introduction to the Kalman filter,” Proc. of SIGGRAPH, Course 8, 2001.
    [27] N. Dalal, and B. Triggs. (2005). INRIA Person Dataset [Online] Available: http://pascal.inrialpes.fr/data/human/.
    [28] C. Papageorgiou and T. Poggio, “A trainable system for object detection,” International Journal of Computer Vision, vol. 38, no. 1, pp. 15-33, 2000.

    下載圖示 校內:2022-07-17公開
    校外:2022-07-17公開
    QR CODE