| 研究生: |
高力行 Kao, Li-Hsing |
|---|---|
| 論文名稱: |
以有限元素法分析退化性椎間盤疾病經腰椎手術後置入腰脊突間支架或椎籠之生物力學影響 Finite Element Analysis of Biomechanics for Degenerative Spine with Lumbar Disc Herniation after Posterior Discectomy, Insertion of Interspinous Device, or Interverterbral Cage |
| 指導教授: |
胡宣德
Hu, Hsuan-Te 黃國淵 Huang, Kuo-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | DIAM 、PEEK Cage 、退化性椎間盤疾病 、椎間盤突出 、椎板開孔術 、椎間盤切除術 、有限元素法 |
| 外文關鍵詞: | DIAM, PEEK Cage, Lumbar degenerative disc disease, Disc herniation, Laminotomy, Discectomy, Finite element method |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著年齡的增長,人體的脊椎經常伴隨退化性椎間盤突出問題的發生,這些症狀常見於腰椎第四節與第五節之間,若初步的保守治療沒有辦法改善,則改以手術治療。
本研究考慮退化性椎間盤與腰椎第四節(L4)與第五節(L5)之間發生椎間盤突出的問題,並建立經椎間盤切除術及椎板開孔術後的有限元素模型,分析四種不同狀況的治療情形:(1)L4、L5間經椎板開孔術及椎間盤切除術;(2)手術後使用DIAM固定;(3)手術後使用PEEK Cage固定;(4)手術後使用DIAM及Cage固定 的生物力學影響。
本研究以電腦斷層掃描(CT)建立L3至S1的脊椎模型,並以Hypermesh建立DIAM及Cage的模型。在腰椎第四節及第五節之間,將後骨左側的部分,移除中心線上半部和以下四分之一部份的範圍,模擬椎板開孔術的開孔大小。以弱化L3至S1各椎節間的椎間盤纖維環的楊氏係數至60%及80%,模擬退化性椎間盤的強度。最後施予各個椎節1Nm的彎矩或轉矩模擬前彎、後仰、側彎、扭轉四個動作,以ABAQUS求解並分析端板間的相對轉角、von-Mises應力及應變能密度。
With aging, degenerative disc disease or disc herniation would occur in elder people. It is commonly found in the lumbar spine especially between vertebrae L4 and L5. If conservative treatment is no way to improve the poor situation, a surgical treatment will be performed.
This study explored the lumbar degenerative disc disease with disc herniation of L4-5 by finite element models simulating surgical treatment with laminotomy and discectomy of L4-5. We analyzed four different kinds of surgical interventions:(1) surgery with laminotomy and discectomy of L4-5 (2) surgery with insertion of interspinous DIAM device (3) surgery with interbody PEEK cage fusion (4) surgery with insertion of DIAM and PEEK cage together.
In this study we used computed tomography (CT) for establishing a spine model of L3 to S1 and created the DIAM and PEEK cage models with Hypermesh software. For L4-5 laminotomy, we resected left lower half of L4 lamina and upper quarter of L5 lamina. To simulate the degenerative disc disease, Young's modulus of the annulus fiber was weakened to 60% and 80% in the model. Finally we exerted moment of 1Nm on each vertebra and used ABAQUS as tools to investigate the difference in the relative rotation angle of the endplates, von Mises stress and strain energy density in intervertebral discs under different loading conditions (extension, flexion, lateral bending and axial rotation).
[1] G. Henry: 'Grey's Anatomy', 1917.
[2] M. Nordin and V. H. Frankel: 'Basic Biomechanics of the Musculoskeletal System. Lippincott Williams and Wilkins', 2001.
[3] Frankel, Victor H.: 'Basic biomechanics of the skeletal system', 1980
[4] M.J. Silva, C. Wang, T.M. Keaveny1, W.C. Hayes: 'Direct and computed tomography thickness measurements of the human lumbar vertebral shell and endplate', Bone, 1994, 15(4), 409–414
[5] W. III, A. A., and M. M. Panjabi: 'Clinical biomechanics of the spine', 1990.
[6] A. Strayer: 'Lumbar Spine Surgery-A Guide to Preoperative and Postoperative Patient Care', AANN Reference Series for Clinical Practice.
[7] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt: 'Concepts and applications of finite element analysis,fourth edition', 2002
[8] C. Lee, Y. E. Kim, C. S. Lee, Y. M. Hong, J. Jung, and V. K. Goel: 'Impact response of the intevertebral disc in a finite element model', Spine, 2000, 25, 2431-2439.
[9] J. T. M. Cheung, M. Zhang, and D. H. K. Chow: ‘Biomechanical reponses of the intervertebral jionts to static and vibrational loading: a finite element study’, Clinical Biomechanics, 2003, 18, 790-799.
[10] G. Baroud, J. Nemes, P. Heini, and T. Steffen: 'Load shift of the intervertebral disc after a vertebroplasty: a finite-element study', European Spine Journal, 2003, 12(4), 421-426.
[11] A. Polikeit, F. S. J., N. L. P., and O. T. E.: 'Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis', European Spine Journal, 2003, 12(4), 413-420.
[12] G. Denozière: 'Numerical modeling of a ligamentous lumbar motion segment', PhD thesis, Georgia Institute of Technology, 2004.
[13] A. Rohlmann, N. K. Burra, T. Zander, and G. Bergmann: 'Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine', European Spine Journal, 2007.
[14] K. Sairyo, V. K. Goel, A. Masuda, S. Vishnubhotla, A. Faizan, A. Biyani, N. Ebraheim, D. Yonekura, R. I. Murakami, and T. Terai.: 'Three-dimensional finite element analysis of the pediatric lumbar spine', European Spine Journal, 2006, 15, 923-929.
[15] J. L. Wang, M. Parnianpour, A. Shirazi-Adl, and A. E. Engin: 'Viscoelastic Finite Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion: Effect of Loading Rate', Spine, 2000, 25(3), 310-318.
[16] T. Pitzen, F. H. Geisler, D. Matthis, H. Müller-Storz, K. Pedersen, and W. I. Steudel: 'The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment', European Spine Journal, 2001, 10(1), 23-29.
[17] K. Goto, N. Tajima, E. Chosa, K. Totoribe, H. Kuroki, and Y. Arizumi: 'Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model', Journal of Orthopaedic Science, 2002, 7(2), 243-246.
[18] R. N. Natarajan and G. B. J. Andersson: 'Modeling the annular incision in a herniated lumbar intervertebral disc to study its effect on disc stability', Computers Structures, 1997, 64(5-6), 1291-1297.
[19] V. Mow and W. C. Hayes: 'Basic orthopaedic biomechanics', 1991.
[20] S. Gwanseob: 'Viscoelastic responses of the lumbar spine during prolonged stooping', 2005, Ph. D. dissertation.
[21] A. Glema, T. Lodygowski, W. Kakol, M. Wierszycki, and M. B. Ogurkowska: 'Modeling of intervertebral discs in the numerical analysis of spinal segment', ECCOMAS, 2004, 24-28
[22] M. A. Adams and W. C. Hutton: 'The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces', The Journal of Bone and Joint Surgery, 1980, 62-B(3), 368-362.
[23] M. Sharma, N. A. Langrana, and J. Rodriguez: 'Role of ligaments and facets in lumbar spinal stability', Spine, 1995, 20(8), 887-900.
[24] M. Sharma, N. A. Langrana, and J. Rodriguez: 'Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response', Journal of Biomechanical Engineering, 1998, 120, 118-125.
[25] Yang-Hwei Tsuang, Yueh-Feng Chianga,Chih-Yi Hung,Hung-Wen Wei, Chang-Hunag, Cheng-Kung Cheng: 'Comparison of cage application odality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study', Medical Engineering & Physics, 2009, 31, 565-570.
[26] J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, and G. Vanneuville: 'Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction', Journal of Biomechanical Engineering, 1985, 18(3), 167-176.
[27] S. A. Shirazi-Adl, A. M. Ahmed, and S. C. Shrivastava: 'A finite element study of a lumbar motion segment subjected to pure sagittal plane moments', Journal of Biomechanical Engineering, 1986, 19, 331-350.
[28] H. W. Ng and E. C. Teo: 'Nonlinear Finite Element Analysis of the Lower Cervical Spine(C4-C6) Under Axial Loading', Journal of Spinal Disorders, 2001, 14(3), 201-210.
[29] V. K. Goel, H. Park, and W. Kong: 'Investigation of vibration characteristics of ligamentous lumbar spine using the finite element approach', Journal of Biomechanical Engineering, 1994, 116, 377-383.
[30] N. H. C. K.: 'Computational analysis of the time-dependent biomechanical behavior of the lumbar spine', PhD thesis, Ohio State University, 2004.
[31] Medtronic: ‘CAPSTONE PEEK Spinal System’,
http://www.mtortho.com/public/capstone_peek_st.pdf, June 18, 2013.
[32] C. F. Jean Taylor: ‘INTERSPINOUS IMPLANT’, U.S Patent, No. US 8,118,839 B2, 2012
[33] C. M. Bellini, F. Galbusera, M. T. Raimondi, G. V. Mineo, and M. Brayda-Bruno: ’Biomechanics of the Lumbar Spine After Dynamic Stabilization’, Journal of Spinal Disorders & Techniques, vol. 20, pp. 423-429, 2007.
[34] A. Atalay, A. Akbay, B. Atalay, and N. Akalan: ‘Lumbar disc herniation and tight hamstrings syndrome in adolescence’, Childs Nerv Syst, vol. 19, pp. 82-5, Feb 2003.
[35] 余朝駿,王江,昊永康,易雪冰: ‘腰椎間盤突出症的CT分型分級分類診斷研究’, Sichun Medical Journal, vol. 25, pp. 872-874, 2004.
[36] C. W. A. M. D. Pfirrmann, A. M. D. Metzdorf, M. M. D. Zanetti, J. M. D. a. Hodler, and N. M. D. Boos: ‘Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration’, Spine, vol. 26, pp. 1873-1878, 2001
[37] Kyphon: ’Hi-Res Photo’,
http://multivu.prnewswire.com/mnr/kyphon/27585/, June 18, 2013.
[38] Spinal normaliztion: ’ the Wallis Implant’,
http://www.pauldurso.com/spinal_normalisation.htm, June 18, 2013.
[39] Coflex: ’ The coflex(TM) device’,
http://globalpatientnetwork.com/devices/Coflex.html, June 18, 2013.
[40] Medtronic: ’DIAM™ Spinal Stabilization System’,
http://spineinfo.ru/~files/DIAMST.pdf, June 18, 2013.
[41] 鮑醫師線上骨科診所: ‘脊椎融合手術’ ,
http://www.ispinecare.com/spine_disease/spondylolisthesis/treatment.htm, June 18, 2013.
[42] 古宗達: '以有限元素法分析輕度解離性腰薦椎滑脫經後方內固定手術後之脊椎生物力學影響', 土木工程研究所, 國立成功大學, 2012, 碩士論文.
[43] I. YAMAMOTO, M. M. PANJABI, T. CRISCO, and T. OXLAND: ‘Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint’, Spine, vol. 14, pp. 1256-1260, 1989.
[44] 劉哲榮: '後方腰椎間融合手術後應力重新分配之有限元素分析', 土木工程研究所, 國立成功大學, 2009, 碩士論文