| 研究生: |
蔡明宏 Tsai, Ming-Hung |
|---|---|
| 論文名稱: |
工具機之氣壓配重策略與控制系統之研究 Pneumatic Counterweight Strategy and Control System of a Machine Tool |
| 指導教授: |
施明璋
Shih, Ming-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 氣壓配重系統 、壓力控制系統 、自調式模糊控制 、模糊滑動模式控制 、摩擦力補償 、力量追蹤控制 |
| 外文關鍵詞: | Pneumatic counterweight system, pressure control system, self tuning fuzzy logic control, fuzzy sliding mode control, friction compensation, force tracking control |
| 相關次數: | 點閱:107 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣壓配重系統是以氣壓缸支撐工具機主軸的重量,以降低重力對主軸驅動馬達的負載、節省能源的損耗並降低重力對主軸運動的影響。因此氣壓配重系統相較於其他配重系統而言,更適合使用於高速加工機。傳統氣壓配重系統迴路的設計,是以氣壓缸連接一大的儲氣桶,以降低主軸移動時造成的壓力變化,並以機械式調壓閥調整儲氣桶的壓力。現今工具機的進給速度朝高速化發展,使用傳統氣壓配重系統在主軸高速運行時會造成較大的壓力變化。本文改良傳統氣壓配重系統迴路的設計,直接以機械式調壓閥調節氣壓缸的壓力並輔以開關閥作壓力補償,以提升主軸高速移動時氣壓缸壓力的穩定性。為提升氣壓配重系統的性能以及縮小配重系統的體積,本文設計比例壓力閥控制迴路以及伺服閥控制迴路應用於氣壓配重系統。用比例壓力閥取代傳統機械式調壓閥作開路控制,雖然可以有效提升配重系統的性能,但仍需連接儲氣桶方能有效降低主軸移動時所造成的壓力變化。因此本文設計一自調式模糊控制器應用於比例壓力閥控制迴路,在沒有連接儲氣桶的狀況下,依然可有效的降低氣壓缸的壓力變化。由於比例壓力閥控氣壓配重系統會因為主軸移動速度與加速度的提升,而導致配重系統的性能的下降。因此本文設計一改良型模糊滑動模式控制器應用於伺服閥控制迴路,以提升氣壓配重系統的穩定性。其次根據氣壓缸摩擦力的特性,適當的調節氣壓缸的平衡壓力,以補償摩擦力對氣壓缸出力的影響。伺服閥控力量控制系統亦可提供一額外的出力,可用於降低馬達在移動上或是加工上的負載。實驗結果顯示,本論文所提出的氣壓迴路架構以及控制法則,可有效提升氣壓配重系統的性能以及穩定性,並具有可行性與實用性。
The pneumatic counterweight system enables machine tools to support the weight of the spindle of the machine tool by using air cylinders. The pneumatic counterweight system is a suitable method of counterweight method because of its high speed and force capacity, combined with its low price and clean operations. The pneumatic pressure compensation method applied for the conventional pneumatic counterweight system is designed to connect a large air tank with a pneumatic cylinder. The air tank is connected to the compressed air source, the compressor, and the pressure regulator or the pressure switch is added to achieve the constant pressure. Therefore the pressure change in the pneumatic cylinder can be reduced due to the spindle motion. However, if the spindle of the machine tool travels at a faster rate, a constant pressure cannot be hold using the conventional method. Therefore this study reformed the pneumatic circuit of the conventional pneumatic counterweight system, the pressure regulator and pressure switch was connected to the cylinder directly. The variation of the pressure in the cylinder can be held by using the new pneumatic circuit. In order to increase the performance of the counterweight system and make the volume of the system smaller, the proportional pressure valve controlled circuit and servo valve controlled circuit are designed and developed as an alternative to the pneumatic counterweight system. The self tuning fuzzy controller was designed and implemented for regulating the pressure in the cylinder using the proportional valve. Through the control method, the fluctuation of the pressure can be decreased efficiently without connecting a large air tank if the machine tool travels at a faster rate. The performance of the proportional valve control system can be decreased at the higher speed and acceleration, so that a modified fuzzy sliding mode controller is developed to increase the stability of the pressure in the cylinder. Besides, the pressure of the cylinder can be also adjusted to eliminate the effect of the friction force by using servo valve controlled system. This control method can be reduced the load during machining and moving. The experimental results show that the proposed pneumatic control circuits and control methods have the ability, in practice, to improve the performance and stability of pneumatic counterweight system.
[1] Institut für Produktionstechnik und Spanende Werkzeugmaschinen TU Darmstadt, http://www.ptw.maschinenbau.tu-darmstadt.de/hsc/projekte
/limo_maschine/index.html.
[2] 施明璋,”線性馬達工具機氣壓配重之研究”,工業技術研究院建教合作計畫報告,2004。
[3] 亞太菁英股份有限公司產品型錄。
[4] 台中精機股份有限公司產品型錄。
[5] 穎儷自動化有限公司,http://www.inleeo.com.tw/scbs_c.htm.
[6] Blackburn J.F., Reethof G., Shearer J.L., “Fluid Power Control” ,M.I.T. Press, 1960.
[7] Merritt H.E., “Hydraulic Control System” ,John Willey & Sons Inc., 1967.
[8] Mocloy and Martin, “Control of Fluid Power”, 2nd, Ellis Horwood Limited, 1980.
[9] Araki K., DU Y., Yin Y. and Chen J., “The Force Control of a Spot Welding Machine with a Specially Designed Pneumatic Cylinder”, Proceedings of the Third JHPS International Symposium, Yokohama, Japan, pp.343-348, 1996.
[10] Ben-Dov D. and Salcudean S.E., “A Force-Controlled Pneumatic Actuator”, IEEE Transactions on Control Systems Technology, Vol. 2, No. 3, pp.906-911, 1994.
[11] Sorli M. and Vigliani A., “Design Analysis of a Pneumatic Force Control Servosystem with Pressure Proportional Valve”, Journal of Robotics and Mechatronics, Vol. 10, No. 4, pp.370-376, 1998.
[12] Sorli M., Figliolini G., and Pastorelli S., “Dynamic model and experimental investigation of a pneumatic proportional pressure valve”, IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 1, pp.78-86, March 2004.
[13] Cho S.H., Fiedler M., Rudiger F., and Helduser S., “Virtual design model based pressure tracking control of high dynamic pneumatic valves using a sliding mode controller combined with a proportional integral derivative scheme”, Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, Vol. 220, No. 5, pp.353-364, 2006.
[14] Wang X.-S., Cheng Y.-H. and Peng G.-Z., “Modeling and Self-tuning Pressure Regulator Design for Pneumatic-Pressure-Load Systems”, Control Engineering Practice, Vol. 15, No. 9, pp.1161-1168, 2007.
[15] Shih M.C. and Hwang Y.F., “Pneumatic Servo-Cylinder Position Control Using a Self-Tuning Controller”, JSME International Journal, Series 2: Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, Vol. 35, No. 2, pp.247-254, 1992.
[16] McDonell B.W. and Bobrow J.E., “Adaptive Tracking Control of an Air Powered Robot Actuator”, Transactions of ASME, Journal of Dynamic Systems Measurement and Control, V115, pp.427-433, 1993.
[17] Shih M.C. and Lu C.S., “Fuzzy-Sliding Mode Position Control of a Ball Screw Driven by Pneumatic Servomotor”, Journal of Mechatronics, Vol. 5, No. 4, pp.421-431, 1995.
[18] Araki K., DU Y., Yin Y. and Chen J., “The Force Control of a Spot Welding Machine with a Specially Designed Pneumatic Cylinder”, Proceedings of the Third JHPS International Symposium, Yokohama, Japan, pp.343-348, 1996.
[19] Richer E. and Hurmuzlu Y., “A High Performance Pneumatic Force Actuator System: Part I-Nonlinear Mathematical Model”, Transactions of ASME, Journal of Dynamic Systems Measurement and Control, Vol. 122, pp.416-425, 2000.
[20] Richer E. and Hurmuzlu Y., “A High Performance Pneumatic Force Actuator System: Part Ⅱ-Nonlinear Controller Design”, Transactions of ASME, Journal of Dynamic Systems Measurement and Control, Vol. 122, pp.426-434, 2000.
[21] Shih M.C., Luor N.L., ”Self Tuning Neural Fuzzy Control the Position of a Pneumatic Cylinder Under Vertical Load”, Proceeding of the sixth Triennial International Symposium on Fluid Control Measurement and Visualization”, Aug.13-17, 2000.
[22] Pandian S.R., Takemura F., Y. Hayakawa, S. Kawamura, “Pressure Observer-Controller Design for Pneumatic Cylinder Actuators”, IEEE/ASME Transactions on Mechatronics, Vol. 7, No. 4, pp.490-499, 2002.
[23] Pai K.R. and Shih M.C., ”Nanoaccuracy Position Control of A Pneumatic Cylinder Driven Table”, International Journal of JSME, Series C,Vol.46,.No.3, pp.1062-1068, 2003.
[24] Chiang M.H., Chen C.C., and Tsou T.N., “Large stroke and high precision pneumatic-piezoelectric hybrid positioning control using adaptive discrete variable structure control”, Mechatronics, Vol. 15, No. 5, pp.523-545, 2005.
[25] Tsai M.H. and Shih M.C., “A Study of the Pneumatic Counterweight of Machine Tools Conventional and Active Pressure Control Method”, International Journal of JSME, Series C - Mechanical Systems Machine Elements and Manufacturing, Vol. 49, No. 3, 2006.
[26] Tsai M.H., Hsu T.Y., Pai K.R. and Shih M.C., “Precision Position Control of Pneumatic Servo Table Embedded with Aerostatic Bearing”, Journal of System Design and dynamics, Vol. 2, No. 4, pp.940-949, 2008.
[27] Paul A.K., Mishra J.K., and Radke M.G., “Reduced Order Sliding Mode Control for Pneumatic Actuator”, IEEE Transactions on Control Systems Technology, Vol. 2, No. 3, 1994.
[28] Andersen B., “The Analysis and Design of Pneumatic Systems”, Wiley, New York, 1967.
[29] Schuder C.B., and Binder R.C., “The Response of Pneumatic Transmission Lines to Step Inputs”, ASME J. Basic Eng., 81, pp.578-584, 1959.
[30] Ma J., Wang H., Oneyama N., Senoo M., and Zhang H., “Research on Reliability test circuit of pneumatic pressure regulator”, Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic Technology and Artificial Intelligence, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 6357 , 2006.
[31] Shiraishi M. and Yonekawa H., “Springless-Type Pneumatic Pressure Regulator”, Journal of Dynamic Systems, Measurement, and Control, Vol. 109, pp.69-72, 1987.
[32] Shampine L.F., “Numerical Solution of Ordinary Differential Equations”, Chapman & Hall, New York, 1994.
[33] Hsieh M.F. et al., “Servo Design of a Vertical Axis Drive Using Dual Linear Motors for High Speed Electric Discharge Machining”, International Journal of Machine Tools & Manufacture Vol. 47, pp.546-554, 2007.
[34] Tani G. et al., “Dynamic Hybrid Modeling of the Vertical Z Axis in a High Speed Machining Center: Towards Virtual Machining”, Journal of Manufacturing Science and Engineering, Vol. 129, pp.780-788, 2007.
[35] Zadeh L.A., ”Fuzzy Sets”, Information and Control, Vol. 8, pp.338-353, 1965.
[36] Zadeh L.A., “Outline of a New Approach to the Analysis complex systems and decision processes”, IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-3, No. 1, pp.28-44, 1973.
[37] Lee C.C., “Fuzzy Logic in Control Systems: Fuzzy Logic Controller -PartI”, IEEE Trans. SMC, Vol. 20, No. 2, pp.404-418, 1990.
[38] Lee C.C., “Fuzzy Logic in Control Systems: Fuzzy Logic Controller -PartII”, IEEE Trans. SMC, Vol. 20, No. 2, pp.419-435, 1990.
[39] Lhee C.G. and Park J.S., Ahn H.S., and Kim D.H., “Sliding Mode-Like Fuzzy Logic Control with Self-Tuning the Dead Zone Parameters”, IEEE Transactions on Fuzzy Systems, Vol. 9, No. 2, pp.343-348, 2001.
[40] 王進德,”類神經網路與模糊控制理論入門與應用”,全華科技,2006。
[41] Mudi R.K. and Pal N.R., ”Robust Self-Tuning Scheme for PI- and PD-Type Fuzzy Controllers” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 1, pp. 2-16, 1999.
[42] Palm R., “Scaling of Fuzzy Controller Using the Cross-Correlation”, IEEE Trans. Fuzzy Syst., Vol. 26, No. 5, pp. 791-799, 1996.
[43] Mudi R.K. and Pal N.R., “Self-tuning Fuzzy PI Controller”, Fuzzy Sets and Systems, Vol. 115, No. 2, pp.327-338, 2000.
[44] FESTO Inc., Operating instructions of MPYE-type servo valve, FESTO Inc., 2004.
[45] Lawson C.L. and Hanson R.J., "Solving least squares problems", Society for Industrial and Applied Center, Philadelphia, 1995.
[46] Draper N.R and Smith H., "Applied Regression Analysis", 3rd Ed., John Wiley & Sons, New York, 1998.
[47] Slotine J.J., “Sliding Controller Design for Nonlinear Systems”, International Journal of Control, Vol. 40, No. 2, pp.421-434, 1984.
[48] Slotine J.J. and Li W, “Applied nonlinear control”, Prentice Hall, Inc., Upper Saddle River, New Jersey, 1991.
[49] Chiang M. H., Yang F.L., Chen Y.N., and Yeh Y.P., “Integrated Control of Clamping Force and Energy-Saving in Hydraulic Injection Moulding Machines Using Decoupling Fuzzy Sliding-mode Control”, International Journal of Advanced Manufacturing Technology, Vol. 27, No. 1-2, pp.53-62, 2005.
[50] Li T.H. and Tsai C.Y., “Parallel fuzzy sliding mode control of a spring linked cart-pole system”, IECON Proceedings, Industrial Electronics Conference, Vol. 1, pp.28-33, 1998.
[51] Renn J.-C. and Liao C.-M., “A study on the speed control performance of a servo-pneumatic motor and the application to pneumatic tools”, International Journal of Advanced Manufacturing Technology, Vol. 23, No. 7-8, pp.572-576, 2004.
[52] B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction”, Automatica, Vol. 30, No. 7, pp.1083-1138, 1994.
[53] C. Canudas de Wit and P. Lischinsky, “Adaptive friction compensation with partially known dynamic friction model: Low velocities”, Int. J. Adaptive Contr. Signal Processing, Vol. 11, No. 1, pp.65-80, 1997.