簡易檢索 / 詳目顯示

研究生: 王鈺凱
Wang, Yu-Kai
論文名稱: 藉由界面偶極及表面電漿共振提昇高分子發光二極體效能之研究
Enhanced Performance of Polymer Light-Emitting Diodes via Interfacial Dipole and Surface Plasmon Resonance
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 電子注入層界面偶極表面電漿共振
外文關鍵詞: Electron Injection Layer, Interfacial Dipole, Surface Plasmon Resonance
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將雙離子產生的界面偶極及金奈米粒子產生的表面電漿共振效應用於高分子發光二極體的電子注入層的探討,實驗結果發現可以成功的提升元件的效能。
    第一部份使用3-磺丙基十八烷基二甲基銨(SB3-18)做為電子注入層,以G-PF為發光層,鋁當作陰極,發現因其可在發光層與陰極間產生界面偶極,使電子降低注入能障,來提升元件效能,進一步做濃度最適化實驗,可以使元件得到更好的效果,但是SB3-18在較高功函數的金屬像金銀當陰極提升效果有限,經由二維表面粗度儀量測及原子力顯微鏡量測,推測是因為其厚度較薄,造成高功函數的金屬容易破壞此電子注入層,使其效能提升有限。
    第二部份是使用電子注入層的材料溴化四辛基銨(TOAB),因其可當作界面活性劑,利用空間及靜電穩定金奈米粒子,聚乙烯砒咯烷酮(PVP)當保護劑,來合成金奈米粒子,並當作電子注入層,有良好穩定性。在PVP和TOAB濃度固定下,當加入金奈米粒子時,發現元件有較好的效能,藉由光激發螢光量測(PL)和紫外可見光譜(UV-vis)的量測,推測元件的效能提升,來自金奈米粒子的表面電漿共振。

    In this work, we applied interfacial dipole and surface plasmon resonance produced by zwitterions and gold nanoparticle to enhance performance of polymer light- emitting diodes.
    In first part, SB3-18 used as electron injection layer , G-PF as active layer, and Al as cathode.SB3-18 on G-PF can induce interfacial dipole ,heightening the vacuum level , decreasing electron injection barrier and enhancing performance of device. By selecting appropriate concentration can get much better devices. But we use SB3-18 as electron injection layer with high work function metal such as Au and Ag as cathodes do not get better performance because the thickness of SB3-18 is thin byα-step measurement
    In the second part,TOAB used as surfactant and PVP as protection agent synthesizing gold nanoparticles and we use that as electron injection layer in polymer light-emitting diodes. Device performance enhanced when we add gold nanoparticles in electron injection layer with the same concentration of TOAB and PVP. Through ultraviolet–visible spectroscopy and photoluminescence measurement, we think device enhanced by surface plasmon resonance of gold nanoparticles.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號與縮寫 XIII 第一章緒論 1 1-1 前言 1 1-2 有機發光二極體之簡介 3 1-2-1 高分子發光二極體之工作原理 3 1-2-2 高分子發光二極體載子注入機制與傳導 5 1-3 電子注入層的發展及文獻回顧 6 1-3-1 金屬離子化合物 7 1-3-2 無金屬離子之有機材料 8 1-3-3 共軛聚電解質 9 1-3-4 共軛兩性聚電解質 10 1-3-5 小分子型電子注入層 11 1-4 金奈米粒子於發光二極體的文獻回顧 11 1-4-1 奈米粒子介紹 11 1-4-2 金奈米粒子之表面電漿共振 13 1-4-3 奈米粒子於元件之文獻回顧 14 1-5 研究動機 17 第二章3-磺丙基十八烷基二甲基銨做為電子注入層之研究 23 2-1 前言 23 2-2 實驗流程 24 2-2-1 藥品來源 24 2-2-2 元件組裝及特性量測 24 2-2-3 紫外光光電子圖譜量測 27 2-2-4 原子力顯微鏡之量測 28 2-2-5 開路電壓之量測 28 2-2-6 二維表面粗度儀之量測 29 2-3 結果與討論 29 2-3-1 3-磺丙基十八烷基二甲基銨於不同濃度下對元件的影響 29 2-3-2 3-磺丙基十八烷基二甲基銨於開路電壓和紫外光圖譜的討論 31 2-3-3 3-磺丙基十八烷基二甲基銨於不同陰極下對元件的影響 32 2-3-4 3-磺丙基十八烷基二甲基銨於不同濃度下對之表面形態探討 34 2-3-5 3-磺丙基十八烷基二甲基銨於α-state量測厚度討論 35 2-4 結論 36 第三章 金奈米粒子於高分子發光二極體之電子注入層研究 49 3-1 前言 49 3-2 實驗流程 50 3-2-1 藥品來源 50 3-2-2 元件組裝及特性量測 50 3-2-3 紫外光可見光光譜儀量測 54 3-2-4 穿透式電子顯微鏡量測 55 3-2-5 光激發螢光量測 55 3-2-6 X-ray元素分析之量測 56 3-2-7 開路電壓之量測 56 3-2-8 原子力顯微鏡之量測 57 3-3 結果與討論 57 3-3-1 金奈米粒子的合成結果於穿透式電子顯微鏡及紫外光可見光譜討論 57 3-3-2 金奈米粒子於元件穩定性的紫外可見光譜及元件討論 58 3-3-3 金奈米粒子於X-ray之元素分析 60 3-3-4 金奈米粒子於光激發螢光量測及紫外光可見光譜討論 60 3-3-5 金奈米粒子於不同濃度下對元件的影響 62 3-3-6 金奈米粒子於Voc量測分析 63 3-3-7 金奈米粒子於原子力顯微鏡表面型態討論 64 3-4 結論 74 第四章 總結及建議 75 4-1 總結 75 4-2 未來工作建議76 參考資料 77

    1. Kido, J. M. Kimura, and K. Nagai," Multilayer white light-emitting organic electroluminescent device",Science, 267,1332-1334,(1995)
    2. Forrest, S.R,"The road to high efficiency organic light emitting devices", Organic Electronics, 4,45-48,(2003)
    3. Tang, C.W. and S.A. VanSlyke, "Organic electroluminescent diodes", Electroluminescence, 356-7,(1989)
    4. Burroughes, J.H,"Light-emitting-diodes based on conjugated polymers", Nature, 347(6293), 539-541,(1990)
    5. Baldo, M.A, "Highly efficient phosphorescent emission from organic electroluminescent devices",Nature, 395(6698),151-154,(1998)
    6. Parker, I.D," Carrier tunneling and device characteristics in polymer light-emitting-diodes",Journal of Applied Physics,75(3),1656-1666,(1994)
    7. Gang, L,"An ionic molecular glass as electron injection layer for efficient polymer light-emitting diode", Macromolecular Rapid Communications, 30(17),1484-91,(2009)
    8. Qianfei, X, "Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification",Applied Physics Letters, 83(23),4695-7,(2003)
    9. Niu, Y.H," High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode", Applied Physics Letters, 86(8),(2005)
    10. Parker, I.D., Y. Cao, and C.Y. Yang," Lifetime and degradation effects in polymer light-emitting diodes", Journal of Applied Physics, 85(4), 2441-2447,(1999)
    11. Lee, T.-W, "Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes",Advanced Functional Materials, 19(12),1863-1868,(2009)
    12. Hung, L.S., C.W. Tang, and M.G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode",Applied Physics Letters, 70(2),152-154,(1997)
    13. Heil, H," Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode.",Journal of Applied Physics, 89(1), 420-424,(2001)
    14. Shaheen, S.E, "Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode",Journal of Applied Physics, 84(4), 2324-2327,(1998)
    15. Mori, T,"Electronic structure of 8-hydroxyquinoline aluminum/lif/al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy", Applied Physics Letters, 73(19),2763-2765,(1998)
    16. Xu, Q.F, "Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification",Applied Physics Letters, 83(23),4695-4697,(2003)
    17. Huang, J., Z. Xu, and Y. Yang,"Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate", Advanced Functional Materials, 17(12) ,1966-1973,(2007)
    18. Deng, X.Y,"High efficiency low operating voltage polymer light-emitting diodes with aluminum cathode", Applied Physics Letters, 84(18), 3522-3524,(2004)
    19. Park, J,"Effect of polymer-insulating nanolayers on electron injection in polymer light-emitting diodes",Applied Physics Letters, 84(10),1783-1785,(2004)
    20. Lee,T.-H, "Organic-oxide cathode buffer layer in fabricating high-performance polymer light-emitting diodes", Advanced Functional Materials, 18(19), 3036-3042,(2008)
    21. Huang, F," Novel electroluminescent conjugated polyelectrolytes based on polyfluorene", Chemistry of Materials, 16(4) 708-716,(2004)
    22. Wu, H.B," Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers", Advanced Materials, 16(20) 1826,(2004)
    23. Ma, W.L, Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes.,Advanced Materials, 17(3),274, (2005)
    24. Yang, R,"Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion", Journal of the American Chemical Society, 128(45),14422-14423,(2006)
    25. Yang, R, "Control of interchain contacts, solid-state fluorescence quantum yield, and charge transport of cationic conjugated polyelectrolytes by choice of anion",Journal of the American Chemical Society, 128(51), 16532-16539,(2006)
    26. Hoven, C,"Ion motion in conjugated polyelectrolyte electron transporting layers",Journal of the American Chemical Society, 129(36),10976,(2007)
    27. Huang, F, "A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes", Advanced Materials, 19(15), 2010,(2007)
    28. Meerholz, K, "Device physics - Enlightening solutions", Nature, 437(7057), 327-328,(2005)
    29. Duan, C," Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes",Advanced Materials, 23(14),1665,(2011)
    30. Fang, J, "Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes", Journal of the American Chemical Society, 133(4),683-685,(2011)
    31. Lowe, A.B. and C.L. McCormick, "Synthesis and solution properties of zwitterionic polymers", Chemical Reviews, 102(11),4177-4189,(2002)
    32. Guan, X," Amino N-Oxide Functionalized Conjugated Polymers and their Amino-Functionalized Precursors: New Cathode Interlayers for High-Performance Optoelectronic Devices", Advanced Functional Materials, 22(13),2846-2854,(2012)
    33. Hsieh,S.-N,"Self-assembled tetraoctylammonium bromide as an electron-injection layer for cathode-independent high-efficiency polymer light-emitting diodes", Journal of Materials Chemistry, 21(24), 8715-8720,(2011)
    34. Min, C, "A small-molecule zwitterionic electrolyte without a pi-delocalized unit as a charge-injection layer for high-performance pleds",Angewandte Chemie-International Edition, 52(12), 3417-3420,(2013)
    35. M. Faraday, Philo. Trans. R. Soc, 147, 145 (1875)
    36. Maier, S.A. and H.A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures",Journal of Applied Physics ,98(1),(2005)
    37. Hao, E. and G.C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers", Journal of Chemical Physics, 120(1) 357-366,(2004)
    38. G. Mie, Ann. Phys, 25, 377 (1908)
    39. Willets, K.A. and R.P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing", Annual Review of Physical Chemistry, 267-297,(2007)
    40. Campion, A. and P. Kambhampati, "Surface-enhanced Raman scattering", Chemical Society Reviews, 27(4), 241-250,(1998)
    41. Pillai, S, "Surface plasmon enhanced silicon solar cells",Journal of Applied Physics, 101(9),(2007)
    42. Chang, C.-C,A surface plasmon enhanced infrared photodetector based on inas quantum dots", Nano Letters,10(5),1704-1709,(2010)
    43. Okamoto, K,"Surface-plasmon-enhanced light emitters based on InGaN quantum wells",Nature Materials, 3(9), 601-605,(2004)
    44. Heo, M,High-performance organic optoelectronic devices enhanced by surface plasmon resonance",Advanced Materials, 23(47),5689,(2011)
    45. Atwater, H.A. and A. Polman, "Plasmonics for improved photovoltaic devices", Nature Materials, 9(3),205-213,(2010)
    46. Catchpole, K.R. and A. Polman,"Plasmonic solar cells",Optics Express, 16(26),21793-21800,(2008)
    47. Yang, B, "Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays",Small, 6(9),1038-1043,(2010)
    48. Kwon, M.-K,"Surface-plasmon-enhanced light-emitting diodes",Advanced Materials, 20(7),1253,(2008)
    49. Yeh, D.-M,Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode", Applied Physics Letters, 91(17),(2007)
    50. Cho, C.-Y,"Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN",Nanotechnology, 21(20),(2010)
    51. Yang, K.Y., K.C. Choi, and C.W. Ahn, "Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application", Applied Physics Letters, 94(17),(2009)
    52. Kumar, A,Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon. Organic Electronics, 13(1),159-165,(2012)
    53. Fujiki, A, "Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode",Applied Physics Letters, 96(4),(2010)
    54. Xiao, Y,"Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles", Applied Physics Letters,100(1),(2012)
    55. Enustun, B.V. and J. Turkevich," Coagulation of colloidal gold. Journal of the American Chemical Society", 85(21), 3317,(1963)
    56. Ko, S.-J,"Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles",Energy & Environmental Science, 6(6), 1949-1955,(2013)
    57. Wu, X,"Gold nanoparticles modified ITO anode for enhanced pleds brightness and efficiency", Journal of Materials Chemistry C, 1(42),7020-7025,(2013)
    58. Ma, X,"High polymer-LEDs enhancement by exciton-plasmon coupling using encapsulated metallic nanoparticles", Organic Electronics, 14(7),1916-1923,(2013)
    59. Ishii, H,"Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces",Advanced Materials, 11(8),605,(1999)
    60. Brust, M,"Novel gold-dithiol nano-networks with nonmetallic electronic-properties",Advanced Materials,7(9), 795,(1995)
    61. Gittins, D.I. and F. Caruso, "Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media",Angewandte Chemie-International Edition, 40(16),3001-3004,(2001)
    62. Chen, S.-H. and S.-C. Chan, "Light enhancement of plasmonic nanostructures for polymer light-emitting diodes at different wavelengths",Applied Physics Express, 5(6),(2012)
    63. Liu, F. and J.-M. Nunzi, "Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles", Applied Physics Letters, 99(12),(2011)
    64. Choulis, S.A., M.K. Mathai, and V.E. Choong, "Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices", Applied Physics Letters, 88(21),(2006)
    65. Wang, D,"Hole injection enhancement by sparsely dispersed Au nanoparticles on indium tin oxide electrode in organic light emitting devices",Applied Physics Letters,102(2),(2013)
    66. Li, X,"Dual plasmonic nanostructures for high performance inverted organic solar cells",Advanced Materials, 24(22)3046-3052,(2012)

    下載圖示 校內:2019-07-29公開
    校外:2019-07-29公開
    QR CODE