簡易檢索 / 詳目顯示

研究生: 林奎佑
Lin, Kuei-You
論文名稱: 使用步進馬達於直線串聯彈性致動器的準確力量及阻抗控制
Accurate Force and Impedance Control of Linear Series Elastic Actuators Using Stepper Motors
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 143
中文關鍵詞: 串聯彈性致動器步進馬達導螺桿力量控制阻抗控制干擾觀察器
外文關鍵詞: series elastic actuator, stepper motor, lead screw, force control, impedance control, disturbance observer
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在機器人的研究領域中,致動器之控制性能為其首要元素,本文開發一串聯彈性致動器以達成各項驅動功能及良好的性能表現。其中串聯彈性致動器透過致動器與彈簧元件的結合,可經由量測並控制彈簧元件之變形量,達到相對於傳統剛性致動器更高準確度的力量與阻抗控制。同時彈簧元件亦具備緩衝效果,在致動器與人體或外界之力量交互作用中提供較高的安全性,因此更加適合應用於人機互動領域。然而目前有關串聯彈性致動器的研究大多使用直流有刷或無刷馬達作為驅動器,步進馬達之優勢並未受到足夠的關注。本文比較步進馬達與直流馬達之數據,發覺步進馬達有著遠高於直流馬達之扭矩重量比及扭矩轉子慣量比。因此選用步進馬達不僅可達到輕量化之功效,更可提高系統穩定性及響應速度於串聯彈性致動器之力量與阻抗控制中。藉由轉子角位置的回授,步進馬達亦可達成平順且具高準確度之動態力量響應。
    本文選用步進馬達作為驅動器,設計一直線串聯彈性致動器之原型,並且建立步進馬達與導螺桿的數學模型。使用具備高迴圈速度及運算能力之嵌入式控制器NI CompactRIO®並設計驅動電路以進行馬達的回授控制,透過實驗鑑別與校正馬達參數、彈簧勁度及導螺桿摩擦係數等。接著建立力量控制器、阻抗控制器及干擾觀察器等控制架構,並完整分析系統之穩定性,以及透過響應規格最佳化的方式調整控制器增益值。同時使用商用軟體MATLAB®中的Simulink®建立模擬模型,以利於比較實驗與模擬結果,驗證本文建模之正確性。透過程式的撰寫將控制架構實現於實驗平台中,並進行順逆向力量與阻抗控制實驗達成本文期望之驅動功能以及高響應性能。最後藉由頻率響應分析並比對其他串聯彈性致動器之相關研究成果,驗證步進馬達高扭矩轉子慣量比所帶來的優勢。

    A series elastic actuator (SEA) combines an actuator in series with an elastic spring. By controlling the deformation of the elastic spring, an SEA provides more accurate force and impedance control than conventional rigid actuators. SEAs are ideal for robots and machines that need to interact safely with human or the environment. The majority of existing SEAs uses brushless or brushed DC motors as the actuators. The advantages of using stepper motors as the actuators of SEAs have not received enough attention. Stepper motors have much higher torque-to-weight ratio and torque-to-rotor-inertia ratio than other DC motors. Hence they can provide better stability and high-speed accuracy of force control while maintaining lightweight. When rotor position feedback is used, stepper motors can achieve smooth and ultra-accurate dynamic force response. This thesis develops the dynamic model of a linear SEA and presents its prototype. Forward and inverse force/impedance tracking control responses will be provided to show the advantages of the SEA. It is expected that the method and result presented here can offer a better actuator selection of SEAs when higher torque-to-weight ratio and torque-to-rotor-inertia ratio are both required.

    摘要 I Abstract II 致謝 XIII 目錄 XIV 表目錄 XVIII 圖目錄 XX 符號說明 XXVI 第一章 緒論 1 1.1 背景介紹 1 1.1.1 背景回顧 1 1.1.2 串聯彈性致動器的優勢 2 1.2 文獻回顧 4 1.2.1 串聯彈性致動器相關文獻回顧 5 1.2.2 機器人驅動器相關文獻回顧 6 1.2.3 位置與力量互動控制方法回顧 10 1.3 研究動機及目標 12 1.4 論文架構 12 第二章 步進馬達及導螺桿動態建模 14 2.1 步進馬達模型 14 2.1.1 馬達選用與軟硬體配置 14 2.1.2 馬達數學模型 16 2.1.3 編碼器計數方式 19 2.1.4 馬達驅動與感測電路 21 2.1.5 馬達參數鑑別 25 2.1.6 交軸驅動法 28 2.2 馬達轉速估測法 30 2.2.1 脈衝計時法(T method) 31 2.2.2 脈衝計次法(M method) 32 2.2.3 脈衝計次平均法(M Avg. method) 33 2.2.4 速度估測法之選用 33 2.3 導螺桿摩擦模型 36 2.3.1 導螺桿數學模型 36 2.3.2 摩擦係數鑑別 43 2.3.3 修正型交軸驅動法 46 2.4 本章小結 47 第三章 串聯彈性致動器與力量控制 49 3.1 串聯彈性致動器模型 49 3.1.1 串聯彈性致動器之設計與實現方式 49 3.1.2 串聯彈性致動器時域模型 51 3.1.3 串聯彈性致動器s域模型 54 3.1.4 彈簧勁度校正 55 3.2 力量控制器 56 3.2.1 力量控制模型 57 3.2.2 力量控制系統穩定性分析 60 3.2.3 力量控制系統鑑別 62 3.2.4 力量控制器最佳化設計 71 3.2.5 力量控制時域響應 76 3.2.6 力量控制頻域響應 77 3.3 干擾觀察器式力量控制器設計 81 3.3.1 前饋控制器必要性討論 81 3.3.2 干擾觀察器式力量控制模型 83 3.3.3 干擾觀察器式力量控制器實現 85 3.3.4 干擾觀察器式力量控制性能分析 87 3.4 本章小結 90 第四章 阻抗控制 92 4.1 阻抗控制器 92 4.1.1 串集式阻抗控制模型 92 4.1.2 干擾觀察器式阻抗控制模型 94 4.1.3 機械系統共振頻率分析 95 4.1.4 機械系統相對穩定性分析 97 4.1.5 阻抗控制系統穩定性分析 98 4.2 阻抗控制性能分析及實驗驗證 108 4.2.1 阻抗控制模擬架構 108 4.2.2 阻抗控制穩定性實驗與模擬 109 4.2.3 虛擬勁度控制實驗 112 4.2.4 虛擬阻抗控制實驗 116 4.2.5 順向驅動位置控制實驗 121 4.2.6 位置控制頻率響應分析 123 4.2.7 零阻抗逆向驅動實驗 125 4.2.8 零阻抗控制頻率響應分析 128 4.3 本章小結 129 第五章 結論與未來工作 131 5.1 結論 131 5.2 未來工作 133 參考文獻 136

    [1] Pratt, G. A., & Williamson, M. M. (1995, August). Series elastic actuators. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Vol. 1, pp. 399-406). IEEE.
    [2] Robinson, D. W., Pratt, J. E., Paluska, D. J., & Pratt, G. A. (1999, September). Series elastic actuator development for a biomimetic walking robot. In 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399) (pp. 561-568). IEEE.
    [3] Pratt, J., Krupp, B., & Morse, C. (2002). Series elastic actuators for high fidelity force control. Industrial Robot: An International Journal, 29(3), 234-241.
    [4] KUKA AG, Inc (2017). Sensitive robotics_LBR iiwa [Online products catalog]. Retrieved from https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
    [5] Lagoda, C., Schouten, A. C., Stienen, A. H., Hekman, E. E., & van der Kooij, H. (2010, September). Design of an electric series elastic actuated joint for robotic gait rehabilitation training. In 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 21-26). IEEE.
    [6] Stienen, A. H., Hekman, E. E., ter Braak, H., Aalsma, A. M., van der Helm, F. C., & van der Kooij, H. (2009). Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation. IEEE Transactions on biomedical engineering, 57(3), 728-735.
    [7] Kong, K., Bae, J., & Tomizuka, M. (2011). A compact rotary series elastic actuator for human assistive systems. IEEE/ASME transactions on mechatronics, 17(2), 288-297.
    [8] Sergi, F., Accoto, D., Carpino, G., Tagliamonte, N. L., & Guglielmelli, E. (2012, June). Design and characterization of a compact rotary series elastic actuator for knee assistance during overground walking. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 1931-1936). IEEE.
    [9] Paine, N., Mehling, J. S., Holley, J., Radford, N. A., Johnson, G., Fok, C. L., & Sentis, L. (2015). Actuator control for the NASA‐JSC Valkyrie humanoid robot: A decoupled dynamics approach for torque control of series elastic robots. Journal of Field Robotics, 32(3), 378-396.
    [10] Cummings, J. P., Ruiken, D., Wilkinson, E. L., Lanighan, M. W., Grupen, R. A., & Sup, F. C. (2016). A compact, modular series elastic actuator. Journal of Mechanisms and Robotics, 8(4), 041016.
    [11] Paine, N., Oh, S., & Sentis, L. (2013). Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 19(3), 1080-1091.
    [12] Knabe, C., Lee, B., Orekhov, V., & Hong, D. (2014, August). Design of a compact, lightweight, electromechanical linear series elastic actuator. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V05BT08A014-V05BT08A014). American Society of Mechanical Engineers.
    [13] Yu, H., Huang, S., Chen, G., Pan, Y., & Guo, Z. (2015). Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Transactions on Robotics, 31(5), 1089-1100.
    [14] Apptronik™, Inc (2018). Apptronik P170 Orion [Online products catalog]. Retrieved from https://apptronik.com/product/apptronik-p170-orion/
    [15] ANYbotics, Inc (2019). ANYdrive [Online products catalog]. Retrieved from https://www.anybotics.com/anydrive/#ad-applications
    [16] HEBI Robotics, Inc (2019). X-Series Actuators® [Online product catalog]. Retrieved from http://docs.hebi.us/hardware.html#x-series-actuators
    [17] Zribi, M., Sira-Ramirez, H., & Ngai, A. (2001). Static and dynamic sliding mode control schemes for a permanent magnet stepper motor. International Journal of control, 74(2), 103-117.
    [18] Delpoux, R., Bodson, M., & Floquet, T. (2014). Parameter estimation of permanent magnet stepper motors without mechanical sensors. Control Engineering Practice, 26, 178-187.
    [19] Derammelaere, S., Vervisch, B., De Belie, F., Vanwalleghem, B., Cottyn, J., Cox, P., ... & Vandevelde, L. (2014). The efficiency of hybrid stepping motors: Analyzing the impact of control algorithms. IEEE Industry Applications Magazine, 20(4), 50-60.
    [20] Quigley, M., Asbeck, A., & Ng, A. (2011, May). A low-cost compliant 7-DOF robotic manipulator. In 2011 IEEE International Conference on Robotics and Automation (pp. 6051-6058). IEEE.
    [21] Keller, U., van Hedel, H. J., Klamroth-Marganska, V., & Riener, R. (2016). ChARMin: The first actuated exoskeleton robot for pediatric arm rehabilitation. IEEE/ASME Transactions on Mechatronics, 21(5), 2201-2213.
    [22] Pehlivan, A. U., Sergi, F., & O'Malley, M. K. (2014). A subject-adaptive controller for wrist robotic rehabilitation. IEEE/ASME Transactions on Mechatronics, 20(3), 1338-1350.
    [23] Oriental motor USA Corp, Inc (2018). Stepper motors (motor only) - PKP series 2-phase [Online products catalog]. Retrieved from https://www.orientalmotor.com/stepper-motors/2-phase-stepper-motors-pkp-series.html
    [24] HaydonKerk Motion Solutions™, Inc (2011). Linear motion catalog and design guide [Online products catalog]. Retrieved from http://www.motionusa.com.s3-website-us-east-1.amazonaws.com/haydon_kerk/Full_Catalog.pdf
    [25] Maxon motor, Inc (2019). Mechatronic drive systems [Online products catalog]. Retrieved from https://www.maxonmotor.com.tw/maxon/view/content/index
    [26] Bodson, M., Chiasson, J. N., Novotnak, R. T., & Rekowski, R. B. (1993). High-performance nonlinear feedback control of a permanent magnet stepper motor. IEEE Transactions on Control Systems Technology, 1(1), 5-14.
    [27] Le, K. M., Van Hoang, H., & Jeon, J. W. (2016). An advanced closed-loop control to improve the performance of hybrid stepper motors. IEEE Transactions on Power Electronics, 32(9), 7244-7255.
    [28] Zribi, M., & Chiasson, J. (1991). Position control of a PM stepper motor by exact linearization. IEEE Transactions on Automatic Control, 36(5), 620-625.
    [29] Brooks, T. L. (1990, November). Telerobotic response requirements. In 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings (pp. 113-120). IEEE.
    [30] Hogan, N. (1984, June). Impedance control: An approach to manipulation. In 1984 American control conference (pp. 304-313). IEEE.
    [31] Yu, W., Rosen, J., & Li, X. (2011, June). PID admittance control for an upper limb exoskeleton. In Proceedings of the 2011 American control conference (pp. 1124-1129). IEEE.
    [32] Miller, L. M., & Rosen, J. (2010, September). Comparison of multi-sensor admittance control in joint space and task space for a seven degree of freedom upper limb exoskeleton. In 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 70-75). IEEE.
    [33] Raibert, M. H., & Craig, J. J. (1981). Hybrid position/force control of manipulators. Journal of Dynamic Systems, Measurement, and Control, 103(2), 126-133.
    [34] Ju, M. S., Lin, C. C., Lin, D. H., Hwang, I. S., & Chen, S. M. (2005). A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 349-358.
    [35] Dombre, E., Duchemin, G., Poignet, P., & Pierrot, F. (2003). Dermarob: A safe robot for reconstructive surgery. IEEE Transactions on Robotics and Automation, 19(5), 876-884.
    [36] 徐嘉佑(2013)。具兩共置撓性驅動軸機器手腕之動力與控制。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [37] Nollet, F., Floquet, T., & Perruquetti, W. (2008). Observer-based second order sliding mode control laws for stepper motors. Control engineering practice, 16(4), 429-443.
    [38] Texas Instruments, Inc (1995). OPA548 - high-voltage, high-current, wide-output-voltage-swing power operational amplfier [Online products catalog]. Retrieved from http://www.ti.com/product/OPA548?keyMatch=OPA548&tisearch=Search-ENEverything
    [39] Kenjo, T., & Sugawara, A. (1994). Stepping motors and their microprocessor controls. Oxford: Clarendon Press.
    [40] Weill-Duflos, A., Mohand-Ousaid, A., Haliyo, S., Régnier, S., & Hayward, V. (2015, July). Optimizing transparency of haptic device through velocity estimation. In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 529-534). IEEE.
    [41] Chawda, V., Celik, O., & O’Malley, M. K. (2018). Evaluation of velocity estimation methods based on their effect on haptic device performance. IEEE/ASME Transactions on Mechatronics, 23(2), 604-613.
    [42] Ohmae, T., Matsuda, T., Kamiyama, K., & Tachikawa, M. (1982). A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. IEEE Transactions on Industrial Electronics, (3), 207-211.
    [43] Tsuji, T., Hashimoto, T., Kobayashi, H., Mizuochi, M., & Ohnishi, K. (2008). A wide-range velocity measurement method for motion control. IEEE Transactions on industrial electronics, 56(2), 510-519.
    [44] Vahid-Araghi, O., & Golnaraghi, F. (2010). Friction-induced vibration in lead screw drives. Springer Science & Business Media.
    [45] Karnopp, D. (1985). Computer simulation of stick-slip friction in mechanical dynamic systems. Journal of dynamic systems, measurement, and control, 107(1), 100-103.
    [46] Armstrong-Hélouvry, B., Dupont, P., & De Wit, C. C. (1994). A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 30(7), 1083-1138.
    [47] 李昱鋒(2015)。使用串聯彈驅動於仿人機器手腕之二維扭矩與阻抗控制。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [48] 簡隸(2016)。使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [49] Renishaw, Inc (2001). ATOM™ encoder series [Online product catalog]. Retrieved from http://www.renishaw.com.tw/tw/atom-encoder-series--37564
    [50] 吳冠毅(2018)。肘外甲機器之串聯彈性致動機構與驅動控制器設計。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [51] Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. trans. ASME, 64(11).
    [52] Mehling, J. S. (2015). Impedance control approaches for series elastic actuators (Doctoral dissertation).
    [53] Ohishi, K. (1983). Torque-speed regulation of DC motor based on load torque estimation. In IEEJ International Power Electronics Conference, IPEC-TOKYO, 1983-3 (Vol. 2, pp. 1209-1216).
    [54] Endo, S., Kobayashi, H., Kempf, C. J., Kobayashi, S., Tomizuka, M., & Hori, Y. (1996). Robust digital tracking controller design for high-speed positioning systems. Control Engineering Practice, 4(4), 527-536.
    [55] Lee, H. S., & Tomizuka, M. (1996). Robust motion controller design for high-accuracy positioning systems. IEEE Transactions on Industrial Electronics, 43(1), 48-55.
    [56] Umeno, T., & Hori, Y. (1991). Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on industrial electronics, 38(5), 363-368.
    [57] Nakao, M., Ohnishi, K., & Miyachi, K. (1987, March). A robust decentralized joint control based on interference estimation. In Proceedings. 1987 IEEE International Conference on Robotics and Automation (Vol. 4, pp. 326-331). IEEE.
    [58] 尤應龍(2018)。開發微型串聯彈性致動器於遠端操作機器人的精準力感知與控制。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [59] Colgate, J. E., & Brown, J. M. (1994, May). Factors affecting the z-width of a haptic display. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation (pp. 3205-3210). IEEE.
    [60] Zhang, T., & Huang, H. H. (2018). A lower-back robotic exoskeleton: Industrial handling augmentation used to provide spinal support. IEEE Robotics & Automation Magazine, 25(2), 95-106.
    [61] Park, Y., Paine, N., & Oh, S. (2017). Development of force observer in series elastic actuator for dynamic control. IEEE Transactions on Industrial Electronics, 65(3), 2398-2407.
    [62] Sariyildiz, E., Chen, G., & Yu, H. (2015). An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE Transactions on Industrial Electronics, 63(3), 1900-1910.
    [63] Choi, W., Won, J., Lee, J., & Park, J. (2017). Low stiffness design and hysteresis compensation torque control of SEA for active exercise rehabilitation robots. Autonomous Robots, 41(5), 1221-1242.
    [64] Kim, B., & Deshpande, A. D. (2017). An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. The International Journal of Robotics Research, 36(4), 414-435.
    [65] Lin, K. Y., Wu, K. Y., & Lan, C. C. (2017, July). High-performance series elastic stepper motors for interaction force control. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 773-778). IEEE

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE