| 研究生: |
王靖雯 Wang, Jing-Wen |
|---|---|
| 論文名稱: |
利用神經解剖與電生理方法探討螳螂蝦偏振光視覺系統中的前期訊號處理模式 Anatomical and electrophysiological studies on early visual processing of polarized light in a stomatopod Haptosquilla pulchella |
| 指導教授: |
邱慈暉
Chiou, Tsyr-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 螳螂蝦視覺 、偏振光視覺 、視覺訊號處理 、胞內電生理紀錄 、第一層神經纖維網單極細胞 |
| 外文關鍵詞: | stomatopod vision, polarization vision, visual processing, electrophysiology, intracellular recordings, lamina monopolar cells |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螳螂蝦擁有極為複雜的視覺系統並且是目前已知動物中擁有最多種感光細胞的生物。一般而言,甲殼類生物的感光細胞皆擁有平行排列的微絨毛用以感測環境中的線性偏振光。然而,螳螂蝦的視覺系統不但具有精密的線性偏振光感測能力,而且還擁有以多達12種感色細胞平行處理波長訊號的彩色視覺以及所有動物當中獨一無二的環形偏振光視覺。為了瞭解螳螂蝦的神經系統如何處理如此多樣又複雜的視覺訊號,本研究利用玻璃微電極記錄螳螂蝦(Haptosquilla pulchella)神經纖維網(optic neuropils)內的神經細胞對於不同光刺激的反應。
本研究共記錄到89顆中間神經元細胞並且記錄其細胞對光脈衝、線性及環型偏振光的反應。依其反應模式共分成5大類共10種神經細胞類別,其中產生類比訊號的細胞包括4種第一層神經纖維網中的單極細胞(lamina monopolar cells)、1種正切狀細胞(tangential cells)以及1種首次在動物界中發現針對環型偏振光反應的神經細胞。除此之外。產生數位訊號的細胞包含3種第二層神經纖維網中產生脈衝式反應的細胞(medullary dimming and sustaining cells)和1種僅對光刺激起訖點產生時向性反應(phasic response)的細胞。本篇研究成果提供對螳螂蝦初階視覺訊號處理的初步認識,而關於其完整視覺系統包括彩色及偏振視覺的訊號處理模式則有待未來更深入的研究。
Stomatopod crustaceans, also known as mantis shrimps, has one of the most sophisticated visual system of any animal known. A functional specialized region termed midband which is composed of up to 6 rows of ommatidia and divides the eyes into two hemispheres was found in most of the mantis shrimps. Equipped with the midband, their compound eye is able to detect a diverse of visual information including 12 spectral channels, 4 circular polarization channels and 4 linear polarization channels. With such complex inputs, it has been proposed that stomatopods may require a distinctive visual processing mechanism to decode the information. By performing in vivo intracellular recording method with sharp-glass electrodes on neuropils of Haptosquilla pulchella, I have examined electrophysiological responses of 89 interneurons to light pulse as well as linearly and circularly polarized light. Satisfactory results were classified into 5 major functional groups which contained 3 groups of interneurons producing graded response, including lamina monopolar cells (LMCs), tangential neurons, as well as a new category of circular polarization analysis cell that has never been found in other animals, and 2 groups of interneurons that were spiking neurons and phasic neurons which exhibited digital responses. Though more works are required to fully decipher their visual physiology, results in this study provide an initial insight into how visual signals are transmitted and processed in stomatopod crustaceans.
Beron de Astrada, M., Sztarker, J., & Tomsic, D. (2001). Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo. J Comp Physiol A, 187(1), 37-44.
Chiou, T. H., Kleinlogel, S., Cronin, T., Caldwell, R., Loeffler, B., Siddiqi, A., et al. (2008). Circular polarization vision in a stomatopod crustacean. Current Biology, 18(6), 429-434. doi:10.1016/j.cub.2008.02.066
Daly, I. M., How, M. J., Partridge, J. C., Temple, S. E., Marshall, N. J., Cronin, T. W., et al. (2016). Dynamic polarization vision in mantis shrimps. Nat Commun, 7, 12140. doi:10.1038/ncomms12140
Feynman, R. P., Leighton, R. B., & Sands, M. L. (1963). The Feynman lectures on physics. Reading, Mass.,: Addison-Wesley Pub. Co.
Gagnon, Y. L., Templin, R. M., How, M. J., & Marshall, N. J. (2015). Circularly Polarized Light as a Communication Signal in Mantis Shrimps. Current Biology, 25(23), 3074-3078. doi:10.1016/j.cub.2015.10.047
Glantz, R. (1996). Polarization sensitivity in crayfish lamina monopolar neurons. Journal of Comparative Physiology, 178(3), 413-425.
Glantz, R. M., & Bartels, A. (1994). The spatiotemporal transfer function of crayfish lamina monopolar neurons. J Neurophysiol, 71(6), 2168-2182. doi:10.1152/jn.1994.71.6.2168
Glantz, R. M., & McIsaac, A. (1998). Two-channel polarization analyzer in the sustaining fiber-dimming fiber ensemble of crayfish visual system. J Neurophysiol, 80(5), 2571-2583. doi:10.1152/jn.1998.80.5.2571
Goddard, S. M., & Forward, R. B. (1991). The Role of the Underwater Polarized-Light Pattern, in Sun Compass Navigation of the Grass Shrimp, Palaemonetes-Vulgaris. Journal of Comparative Physiology, 169(4), 479-491.
Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., & el Jundi, B. (2011). Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B Biol Sci, 366(1565), 680-687. doi:10.1098/rstb.2010.0199
How, M. J., Pignatelli, V., Temple, S. E., Marshall, N. J., & Hemmi, J. M. (2012). High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris. J Exp Biol, 215(Pt 12), 2128-2134. doi:10.1242/jeb.068544
Kleinlogel, S., & Marshall, N. J. (2005). Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp). Cell Tissue Res, 321(2), 273-284. doi:10.1007/s00441-005-1118-4
Kleinlogel, S., & Marshall, N. J. (2006). Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J Exp Biol, 209(Pt 21), 4262-4272. doi:10.1242/jeb.02499
Marshall, J., Cronin, T. W., & Kleinlogel, S. (2007). Stomatopod eye structure and function: a review. Arthropod Struct Dev, 36(4), 420-448. doi:10.1016/j.asd.2007.01.006
Marshall, J., Cronin, T. W., Shashar, N., & Land, M. (1999). Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Current Biology, 9(14), 755-758. doi:Doi 10.1016/S0960-9822(99)80336-4
Marshall, J., Land, M. F., & Cronin, T. W. (2014). Shrimps that pay attention: saccadic eye movements in stomatopod crustaceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1636), 20130042. doi:10.1098/rstb.2013.0042
Marshall, J., Land, M. F., King, C., & Cronin, T. (1991). The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarized light. Philosophical Transactions of the Royal Society B: Biological Sciences, 334(1269), 33-56.
Porter, M. L., Zhang, Y., Desai, S., Caldwell, R. L., & Cronin, T. W. (2010). Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans. J Exp Biol, 213(Pt 20), 3473-3486. doi:10.1242/jeb.046508
Roberts, N. W., Chiou, T. H., Marshall, N. J., & Cronin, T. W. (2009). A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nature Photonics, 3(11), 641-644. doi:10.1038/Nphoton.2009.189
Rossel, S., & Wehner, R. (1984). How Bees Analyze the Polarization Patterns in the Sky - Experiments and Model. Journal of Comparative Physiology, 154(5), 607-615. doi:Doi 10.1007/Bf01350213
Schiff, H., Manning, R. B., & Abbott, B. C. (1986). Structure and optics of ommatidia from eyes of stomatopod crustaceans from different luminous habitats. The Biological Bulletin, 170(3), 461-480.
Schwind, R. (1991). Polarization Vision in Water Insects and Insects Living on a Moist Substrate. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, 169(5), 531-540.
Shashar, N., Hagan, R., Boal, J. G., & Hanlon, R. T. (2000). Cuttlefish use polarization sensitivity in predation on silvery fish. Vision Research, 40(1), 71-75. doi:Doi 10.1016/S0042-6989(99)00158-3
Shashar, N., Hanlon, R. T., & Petz, A. D. (1998). Polarization vision helps detect transparent prey. Nature, 393(6682), 222-223. doi:Doi 10.1038/30380
Shashar, N., Rutledge, P., & Cronin, T. (1996). Polarization vision in cuttlefish in a concealed communication channel? J Exp Biol, 199(Pt 9), 2077-2084.
Snyder, A. W. (1973). Polarization Sensitivity of Individual Retinula Cells. Journal of Comparative Physiology, 83(4), 331-360. doi:Doi 10.1007/Bf00696351
Sztarker, J., Strausfeld, N., Andrew, D., & Tomsic, D. (2009). Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. J Comp Neurol, 513(2), 129-150. doi:10.1002/cne.21942
Templin, R. M., How, M. J., Roberts, N. W., Chiou, T. H., & Marshall, J. (2017). Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species. J Exp Biol, 220(Pt 18), 3222-3230. doi:10.1242/jeb.162941
Thoen, H. H., How, M. J., Chiou, T. H., & Marshall, J. (2014). A different form of color vision in mantis shrimp. Science, 343(6169), 411-413. doi:10.1126/science.1245824
Thoen, H. H., Sayre, M. E., Marshall, J., & Strausfeld, N. J. (2018). Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information. J Comp Neurol, 526(7), 1148-1165. doi:10.1002/cne.24398
Thoen, H. H., Strausfeld, N. J., & Marshall, J. (2017). Neural organization of afferent pathways from the stomatopod compound eye. J Comp Neurol, 525(14), 3010-3030. doi:10.1002/cne.24256
Wang-Bennett, L. T., & Glantz, R. M. (1987a). The functional organization of the crayfish lamina ganglionaris. I. Nonspiking monopolar cells. J Comp Physiol A, 161(1), 131-145.
Wang-Bennett, L. T., & Glantz, R. M. (1987b). The functional organization of the crayfish lamina ganglionaris. II. Large-field spiking and nonspiking cells. J Comp Physiol A, 161(1), 147-160.
Waterman, T. (1981). Polarization sensitivity. In H. Autrum (Ed.), Handbook of sensory physiology (pp. 281-469). Berlin ; New York: Springer-Verlag.
Wehner, R. (2001). Polarization vision--a uniform sensory capacity? J Exp Biol, 204(Pt 14), 2589-2596.