簡易檢索 / 詳目顯示

研究生: 陳仕斌
Chen, Shih-pin
論文名稱: 不同陰極奈米修飾層在反轉式高分子發光元件之研究
Inverted polymer light-emitting devices with interfacial modification of cathode using different nanolayers
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 95
中文關鍵詞: 硼氫化鈉自我組裝反轉式高分子發光二極體
外文關鍵詞: Inverted polymer light emitting diodes, sodium borohydride, self-assemble
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究包含兩個部分,第一部分利用不同官能基三甲氧基矽烷系統修飾二氧化鈦電極,藉由其不同的極性方向展現來改變表面特性及表面功函數;第二部分利用還原劑硼氫化鈉直接修飾ITO電極來探討其對高分子發光二極體(PLEDs)電子注入之影響應用在反轉式型高分子發光二極體(Inverse-PLEDs)。兩部分的內容分別詳細敘述如下:
    在第一部分中,分別利用含拉電子基的3-氯丙基三甲氧基矽烷(CP-TMS)以及含推電子基的3-氨丙基三甲氧基矽烷(AP-TMS)和N-氨乙基-3-氨丙基三甲氧基矽烷(PEDA-TMS)三種分子材料,利用其造成的極性方向不同和能力大小的不同來比較其個別對反轉式陰極部分二氧化鈦電極增進電子注入的差別。藉由分析元件之電流-電壓特徵圖,可以得知經修飾後的電子注入能力大小分別為:PEDA-TMS > AP-TMS > CP-TMS,顯示出具有推電子基的氨基才能有效的達到增進電子注入的能力,而用具有拉電子基的氯官能基則是完全相反的結果,利用分子的矽烷端與金屬氧化物二氧化鈦行水解反應而自我組裝(self-assemble)在表面,也因為如此利用拉推兩種相反偶極當作另一端的官能基,進而提高或降低二氧化鈦的功函數,來改變二氧化鈦和主動層之間的電子注入能障。
    在第二部分中,利用還原劑硼氫化鈉修飾ITO電極表面,直接以簡單製程旋轉塗佈的方式製膜,以不同的轉速、溫度來探討其對高分子發光二極體的電子注入之影響,其中以單純ITO當電極的元件,會因為尖端放電的效應影響,元件特性不是很好,然而為何多了還原劑硼氫化鈉的存在,效率可以高達4 cd/A左右,對於如此大的差異在於電子注入之影響,探討硼氫化鈉扮演電子傳遞和注入的功能角色以及BH4-陰離子團的功能為重點研究課題。

    In this study we discuss two methods to improve the electron injection in polymer light emitting diodes. In part one, we using the self-assemble monolayer on titanium dioxide to tune the work function that decrease the electron injection barrier. In part two , we used the sodium borohydride to modify the ITO electrode as the electron transport layer, and discuss how it play the role in electron injection or characteristic within inverted polymer light emitting diodes. The following is the detail of two parts:
    In part one, we using the self-assembly monolayer technology to modify the titanium dioxide surface for tuning its conduction band to match the LUMO energy level for high-yellow phenyl-substituted poly(para-phenylenevinylene) copolymer (HY-PPV). Basic in trimethoxysilane system, we using CP-TMS that included electron-withdraw function group. AP-TMS and PEDA-TMS included electron-donating function group. The different dipole moment result in vacuum level shift, and then reducing or increasing the electron injection barrier. The device performance is PEDA-TMS > AP-TMS > CP-TMS, it means PEDA-TMS can effectively reduce the electron injection barrier.
    In part two, we using the sodium borohydride to modify the ITO surface, the optimal performance for NaBH4-based devices will be controlled in fabricating parameters like thickness or annealing temperature. Efficiency about 4cd/A higher than without NaBH4 modified devices. Show that NaBH4 can effectively enhance the recombination probability of electron and hole. So the characteristic of BH4- anion is interesting for us to make sure how it affect the electron injection or transportation.

    中文摘要 ...i 英文摘要 ..iii 誌謝 ....v 目錄 .....vi 圖目錄………………………………..….x 表目錄………………………………....xiii 符號與縮寫…………………………………….xiv 第一章、 序論………………………………………………1 1-1 有機電激發光元件簡介……………………………………1 1-1-1 前言……………………………………………………1 1-1-2 有機電激發光元件起源及其發展現況………………2 1-1-3 OLED與PLED的材料與特性比較……………………5 1-1-4 O/PLED電激發光原理的基本操作與機制……………8 1-1-5 O/PLED的載子注入與傳輸……………………………11 1-1-6 有機電激發光元件結構………………………………13 1-1-7 修飾層之特性與分類…………………………………15 1-1-8 穩定陰極之需求及其克服問題與現行技術…………17 1-2 自我組裝單分子層技術簡介………………………………21 1-2-1 自我組裝單分子層的原理……………………………21 1-2-2 不同型式與機制的自我組裝單分子層技術…………21 1-2-3 自我組裝單分子層於光電元件之應用………………22 1-3 金屬鹽類奈米層簡介………………………………………24 1-3-1 金屬鹽類奈米層簡介…………………………………24 1-3-2 金屬鹽類奈米層於光電元件之應用…………………24 1-4 研究動機與大綱……………………………………………26 第二章、 二氧化鈦的表面修飾應用於反轉式高分子發光二極體元件………………………………………36 2-1 前言…………………………………………………………36 2-2 實驗部分……………………………………………………38 2-2-1 藥品來源………………………………………………38 2-2-2 自我組裝單分子層結構鑑定與能階分析……………38 2-2-3 元件組裝………………………………………………39 2-2-3-1 ITO玻璃處理………………………………………39 2-2-3-2 陰極修飾層的成膜方法……………………………41 2-2-3-3 自我組裝單分子層的製備…………………………42 2-2-3-4 發光層溶液配製與成膜方式………………………42 2-2-3-5 蒸鍍陽極修飾層及陽極金屬………………………42 2-2-3-6 元件電流-電壓-亮度特性之量測…………………43 2-3 結果與討論…………………………………………………43 2-3-1 不同自我組裝單分子層之元素分析…………………43 2-3-2 不同自我組裝單分子層效果之元件分析……………44 2-3-3 Electron-Only Device之量測分析…………………46 2-3-4 不同自我組裝單分子層之UPS光譜圖分析…………47 2-4 結論…………………………………………………………50 第三章、 利用硼氫化鈉修飾陰極ITO表面於反轉式發光二極體元件的製作與特性………………………59 3-1 前言…………………………………………………………59 3-2 實驗部分……………………………………………………61 3-2-1 藥品來源………………………………………………61 3-2-2 NaBH4奈米層薄膜之表面型態測定與元素分析………61 3-2-3 元件組裝………………………………………………62 3-2-3-1 ITO玻璃處理………………………………………62 3-2-3-2 陰極修飾層的成膜方法……………………………62 3-2-3-3 發光層溶液配製與成膜方式………………………63 3-2-3-4 蒸鍍陽極修飾層及陽極金屬………………………63 3-2-3-5 元件電流-電壓-亮度特性之量測…………………64 3-3 結果與討論…………………………………………………65 3-3-1 NaBH4修飾表面粗糙度之分析………………………65 3-3-2 NaBH4修飾層厚度與烘烤溫度影響之元件探討………66 3-3-3 XPS元素分析之NaBH4最佳烘烤處理溫度……………68 3-3-4 NaBH4修飾之最佳化元件量測特性探討………………68 3-3-5 NaBH4修飾最佳化元件與正規式元件之壽命測試……70 3-3-6 陽離子與陰離子團功能特性之元件探討……………70 3-4 結論…………………………………………………………73 第四章、 總結與建議………………………………………86 4-1 總結…………………………………………………………86 4-2 未來工作建議………………………………………………87 參考文獻………………………………………………………………90 自述…………………………………………………………………95

    1. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2024 (1963).
    2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    3. D. Braun, A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    4. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
    5. D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    6. A. J. Heeger and D. Braun (UNIAX), WO-B 92/16023 (1992).
    7. Karl Ziemelis, Nature, 399, 3, 1999.
    8. http://www.oled-info.com/
    9. http://163.23.210.150/oled/index.htm
    10. G. Grem, G. Leditzky, B. Ulrich and G. Leising, Adv. Mater., 4, 36 (1992).
    11. M. Hamguchi, H. Sawada, J. Kyokane and K. Yoshino, Chem. Lett., 527 (1992).
    12. S. Gaherith, H. G. Nothoper, U. Scherp and E. J. W. List, Jpn. J. Appl. Phys., 43, L891 (2004).
    13. Y. H. Yao, L. R. Kung and C. S. Hsu, Jpn. J. Appl. Phys. , 44, 7648 (2005).
    14. S. A. VanSlyke, A. Pignate, D. Freeman, N. Redden, D. Waters, H. Kikuchi, T. Negishi, H. Kanno, Y. Nishio, M. Nakai, Proceeding of SID’02, p. 886, June 19-24, 2002, Boston, USA.
    15. J. S. Kim, M. GranstrÖm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
    16. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
    17. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
    18. Y. Yang and A. J. Heeger, Appl. Phys. Lett. , 64, 1245, 1994.
    19. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett. , 75, 1679, 1999.
    20. T. Fukuda, T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takazoe, and A. Fukuda, Appl. Phys. Lett. , 68, 2346, 1996.
    21. Henk J.Bolink,* Etienne Baranoff, Miguel Clemente-Leon, Eugenio Coronado, Diego Repetto, Michele Sessolo,and Md. K. Nazeeruddin , Langmuir 2009, 25, 79-83
    22. Saif A. Haque,* Sara Koops, Nurlan Tokmoldin, James R. Durrant, Jingsong Huang,Donal D. C. Bradley, and Emilio Palomares, Adv. Mater. 2007, 19, 683–687
    23. Dinesh Kabra, Myoung Hoon Song, Bernard Wenger, Richard H. Friend,* and Henry J. Snaith* , Adv. Mater. 2008, 20, 3447–3452
    24. Henk J. Bolink, Eugenio Coronado, Diego Repetto, and Michele Sessolo, Appl. Phys. Lett. , 91, 223501, 2007.
    25. Henk J. Bolink,* Eugenio Coronado, Javier Orozco, and Michele Sessolo, Adv.Mater. , 2009, 21, 79-82
    26. Yana Vaynzof, T. Joseph Dennes, Jeffrey Schwartz, and Antoine Kahn, Appl. Phys. Lett. , 93, 103305, 2008.
    27. Henk J.Bolink,* Eugenio Coronado, Diego Repetto ,Michele Sessolo ,Eva M. Barea ,Juan Bisquert ,Germa Garcia-Belmonte ,Jan Prochazka and Ladislav Kavan , Adv. Funct.Mater. 2008, 18, 145-150
    28. Hua-Hsien Liao, Li-Min Chen, Zheng Xu, Gang Li, and Yang Yang, Appl. Phys. Lett. , 92, 173303, 2008
    29. Toshinori Matsushima, Guang-He Jin, and Hideyuki Murata, J. Appl. Phys., 104, 054501 (2008).
    30. Hiroshi Kanno, Russell J. Holmes, Yiru Sun, Stephane Kena-Cohen, and Stephen R. Forrest*, Adv. Mater. 2006, 18, 339-342
    31. Y. -F. Liew, H. Aziz, N. -X. Hu, H. S. -O. Chan, G. Xu, and Z. Popovic, Appl. Phys. Lett., 77, 2650 (2000).
    32. S. Naga, M. Tamekawa, T. Terashita, H. Okada, H. Anada and H. Onnagawa, Synth. Met., 91, 129 (1997).
    33. L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997).
    34. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE Trans. Electron. Devices, 44, 1245 (1997).
    35. C. Ganzorig, K. Suga and M. Fujihira, Mater. Sci. Eng. B, 85, 140 (2001).
    36. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash and N. R. Armstrong, Appl. Phys. Lett., 74, 2324 (1998).
    37. T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett., 73, 2763 (1998).
    38. R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian and N. R. Armstrong, J. Appl. Phys., 84, 6729 (1998).
    39. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern and M. Stoβel, J. Appl. Phys., 89, 420 (2001).
    40. H. -M. Lee, K. -H. Choi, D. -H. Hwang, L. -M. Do, T. Zyung, J. -W. Lee and J. -K. Park, Appl. Phys. Lett., 72, 2382 (1998).
    41. T. -W. Lee and O. O. Park, Adv. Mater., 13, 1274 (2001).
    42. Q. Xu, J. Ouyang, Y. Yang, T. Ito and J. Kido, Appl. Phys. Lett., 83, 4695 (2003).
    43. X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow and Y. Cao, Appl. Phys. Lett., 84, 3522 (2004).
    44. Y. -H. Niu, H. Ma, Q. Xu, and Alex K. -Y. Jen, Appl. Phys. Lett., 86, 083504 (2005).
    45. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S, N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 87, 013504 (2005).
    46. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu and C. T. Chung, Appl. Phys. Lett., 88, 113501 (2006).
    47. S. N. Hsieh, T. Y. Kuo, T. C. Wen, T. F. Guo and Y. L. Lee, J. J. Appl. Phys. 45, L773 (2006).
    48. John A. Howarter and Jeffrey P. Youngblood, Langmuir, 2006, 22, 11142-11147
    49. Mark E. McGovern, Krishna M. R. Kallury, and Michael Thompson, Langmuir 1994, 10, 3607-3614
    50. Beomrak Choi, Jungsoo Rhee, and Hong H. Lee, Appl. Phys. Lett., Vol. 79, No. 13, 24 September 2001
    51. Saghar Khodabakhsh, Dmytro Poplavskyy, Sandrine Heutz, Jenny Nelson, Donal D. C. Bradley, Hideyuki Murata, and Tim S. Jones*, Adv. Funct. Mater. 2004, 14, No. 12, December
    52. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, and W. M. Lau, K. H. Low and H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, Appl. Phys. Lett., Vol. 80, No. 15, 15 April 2002
    53. Valery Bliznyuk, Beat Ruhstaller, Phil J. Brock, Ulli Scherf, and Sue A. Carter*, Adv. Mater. 1999, 11, No.15
    54. Chiatzun Goh, Shawn R. Scully, and Michael D. McGehee, J. Appl. Phys., 101, 114503 (2007).
    55. Ming-Chin Hung, Kun-Yang Wu, Yu-Tai Tao, and Hung-Wei Huang, Appl. Phys. Lett., 89, 203106 (2006).
    56. El Arbi Bazzaoui, Mohammed Bazzaoui, Jean Aubard, John S. Lomas, Nordin Felidj, Georges Levi, Synthetic Metals 123 (2001) 299-309
    57. Yuxiang Liu, Shawn R. Scully, Michael D. McGehee,*, Jinsong Liu,Christine K. Luscombe,,| Jean M. J. Fre´chet,,| Sean E. Shaheen, and David S. Ginley, J. Phys. Chem. B 2006, 110, 3257-3261
    58. Abraham Ulman, Chem. Rev. 1996, 96, 1533-1554
    59. Hin-Lap Yip, Steven K. Hau, Nam Seob Baek, Hong Ma, and Alex K.-Y. Jen*, Adv. Mater. 2008, 20, 2376-2382
    60. Bert de Boer,* Afshin Hadipour, M. Magdalena Mandoc, Teunis van Woudenbergh, and Paul W. M. Blom, Adv. Mater. 2005, 17, No. 5, March 8
    61. Bert de Boer*, Afshin Hadipour, Remko Foekema, Teunis van Woudenbergh, Magda M. Mandoc, Valentin D. Mihailetchi, and Paul W. M. Blom, Proc. SPIE, Vol. 5464, 18 (2004)
    62. Jinsong Huang,* Gang Li, and Yang Yang*, Adv. Mater. 2008, 20, 415–419
    63. Jinsong Huang, Zheng Xu, and Yang Yang*, Adv. Funct. Mater. 2007, 17, 1966–1973
    64. Katsuyuki Morii, Takeo Kawase, and Satoshi Inoue, Appl. Phys. Lett., 92, 213304 (2008).
    65. Yong Cao, Gang Yu, and Alan J. Heeger*, Adv. Mater. 1998, 917, 10, No. 12
    66. Hua-Hsien Liao, Li-Min Chen, Zheng Xu, Gang Li, and Yang Yang, Appl. Phys. Lett. , 92, 173303, 2008
    67. P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvag, Journal of Alloys and Compounds, 387, 97–104 (2005)
    68. Kwanghee Lee,* Jin Young Kim, Sung Heum Park, Sun Hee Kim, Shinuk Cho, and Alan J. Heeger, Adv. Mater. 2007, 19, 2445–2449

    下載圖示 校內:2011-07-14公開
    校外:2011-07-14公開
    QR CODE