簡易檢索 / 詳目顯示

研究生: 洪志瑞
Hung, Chih-Jui
論文名稱: 油質性微藻培養於新型光生化反應器之研究
Studies on Cultivation of Oleaginous Microalgae with a Novel Photobioreactor
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 83
中文關鍵詞: 微藻光生化反應器朗伯—比爾定律平均光強度單位質量藻類的可吸光值
外文關鍵詞: Microalgae, Photobioreactor, Lambert-Beer's law, Photon flux absorbed by the biomass unit, Averaged irradiance
相關次數: 點閱:135下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究中培養的自營性微藻(如擬球藻)是經由光合作用生成養份以維持生長,一般在養分充足的培養環境下,光是影響其生長的主要因子。微藻培養在傳統上是利用平面培養池,但是當微藻濃度變高時,其遮蔽效應變大,造成光線只能穿透部分培養藻液,導致光梯度變大,微藻無法有效率吸收到光,使得其培養效率降低。基於在相同光照面積下,增加其培養深度雖能提高微藻產量,但此方式並不能提升光使用效率,因此設計新型光生化反應器是必要的。
    此研究以開放式矩形槽來模擬平面培養池培養微藻,新型光生化反應器是在矩形槽內放置中空透光性平板設計而成。利用光在空氣中傳播會發生散射現象,使得光線會由平板的側面傳送出去,將可改變系統內的光分佈情形,以提高微藻吸收光的機率。為探討反應器內光分佈變化對微藻生長之影響,實驗中應用朗伯—比爾定律(Lambert-Beer’s law)模擬藻類培養系統中光的分佈情形,再經由計算反應器內的平均光強度,及透過藻類的吸收光線係數,將可估算出每單位質量藻類的可吸光值(Fab)。經由估算,新型光生化反應器內的Fab值均比平面培養池高。實驗結果顯示,藻類培養於新型光生化反應器的產率均比平面培養池高,其中以插入 4個寬度為 5 cm平板的反應器最佳,可提升 24 %的產率。証明在提供相同的光照強度下,藻類培養於新型光生化反應器確實可以提升光使用效率。
    此外,當藻類濃度變高時,藻類吸收的光逐漸不充足,會使得其生長受到限制。於是當藻類濃度上升時,應用半連續式培養策略,稀釋藻類的濃度,使得其可以吸收到較充足的光進行生長。實驗結果顯示,使用半連續培養策略與批次培養相比,可提升13 %的產率,代表此培養策略的確可提升藻類產率。

    關鍵詞 : 微藻、光生化反應器、朗伯—比爾定律、平均光強度、單位質量藻類的可吸光值

    Microalgae need to uptake the light to conduct the photosynthesis for growing biomass, In addition, the distribution of light intensity is the key factor for growth kinetic of microalgae. For instances, open pond, is a general photobioreactor to produce microalgae, but the increase of microalgae concentration decreases the light penetration in the cultivated microalgae system caused by shading effect. Since the large gradient of light intensity in depth results low culture efficiency, the photo-bioreactor, which is an open tank inserted some transparent flat-plates, is proposed to remove the concern of large gradient.
    In this study, there two kinds of photobioreactors, the open tank and the proposed photobioreactor, are compared by the performance index Fab. Fab means the photon flux absorbed by the unit biomass; and it is derived from Iav, the averaged irradiance inside of the photobioreactor estimated by Lambert-Beer’s law. Since Fab value of the proposed photobioreactors is larger than open tank, the biomass productivity is also higher. Large Fab implies that much light is absorbed by microalgae in the photobioreactor through the sides of hollow flat-plates.
    By the experimental observation, the proposed photo-bioreactor, which is composed of the open tank and inserted four 5 cm width flat-plates, performs 24 % better than the common open tank in biomass productivity. And the biomass productivity gains 13 % more, when it is operated in semi-continuous instead of batch modes.

    Keywords: Microalgae, Photobioreactor, Lambert-Beer's law, Averaged irradiance, Photon flux absorbed by the biomass unit

    目錄 Ⅰ 表目錄 Ⅲ 圖目錄 IV 符號 Ⅵ 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 藻類簡介 4 2-1-1 光合作用 7 2-1-2 影響藻類生長的因子 10 2-2 藻類生長方式介紹 18 2-3 藻類培養系統介紹 21 2-4 藻類培養策略介紹 30 第三章 實驗材料與方法 32 3-1 藻種 32 3-2 培養基組成 34 3-3 實驗培養條件 36 3-3-1 藻種保存 36 3-3-2 前培養 37 3-3-3 主培養 37 3-4 光生化反應器 38 3-5 實驗設備 41 3-6 實驗分析方法 42 3-6-1 光照強度測定 42 3-6-2 藻類濃度分析 42 3-6-3 藻類乾重分析 43 第四章 實驗結果與討論 44 4-1 光強度衰減模型 44 4-1-1 藻類培養系統之光強度衰減模型 44 4-1-2 空氣之光強度衰減模型 48 4-1-3 估算新型光生化反應器與平面培養池內的平均光強度 50 4-2 新型光生化反應器與平面培養池之比較 54 4-3 藻類培養策略決定 61 4-3-1 單位質量藻類的可吸光值與對應的藻類產率 61 4-3-2 利用插入中空平板於平面培養池之培養策略提升產率 65 4-3-3 應用半連續式培養策略於新型光生化反應器中提升產率 71 第五章 結論與未來展望 75 5-1 結論 75 5-2 未來展望 77 參考文獻 78 表目錄 表 2-1 藻類產品的商業應用 6 表 2-2 不同藻類於自營、異營、混營培養下之最大比生長速率比較 20 表 2-3 現今已商業化的藻類培養系統及藻種 24 表 2-4 開放式與密閉式藻類培養系統之比較 28 表 2-5 藻類培養系統之分類 29 表 3-1 Walne’s Medium-Nutrient solution composition 35 表 3-2 Walne’s Medium-Trace metal solution (TMS) composition 35 表 3-3 Walne’s Medium-Vitamin solution composition 35 表 3-4 實驗儀器設備表 41 表 4-1 藻類培養於新型光生化反應器與平面培養池之比生長速率 56 表 4-2 藻類培養於平面培養池與其使用插板策略培養之比生長速率 66 圖目錄 圖 2-1 光合作用之光反應與暗反應示意圖 7 圖 2-2 光合作用之光反應電子傳遞途徑示意圖 8 圖 2-3 光合作用效率與光照強度關係圖 9 圖 2-4 光被介質吸收之示意圖 11 圖 2-5 光強度500 μmol photon m-2 s-1 照射濃度 1 g/L Englena gracili於光生化反應器內光分佈情形 14 圖 2-6 開放式藻類培養系統示意圖 22 圖 2-7 密閉式藻類培養系統示意圖 27 圖 3-1 Nannochloropsis oculata 於光學顯微鏡圖 33 圖 3-2 Nannochloropsis oculata 於掃描式電子顯微鏡圖 33 圖 3-3 固定化藻球製備流程圖 36 圖 3-4 新型光生化反應器示意圖 39 圖 3-5 放置 4 個寬度為 5 cm平板之新型光生化反應器俯視圖 39 圖 3-6 放置 2 個寬度為 10 cm平板之新型光生化反應器俯視圖 40 圖 3-7 放置 1 個寬度為 20 cm平板之新型光生化反應器俯視圖 40 圖 3-8 藻類乾重對應吸光值之檢量線 43 圖 4-1 不同藻類濃度對不同入射光強度隨光徑增加之強度衰減關係 (I) 46 圖 4-2 不同藻類濃度對不同入射光強度隨光徑增加之強度衰減關係 (II) 47 圖 4-3 光線於空氣中隨光徑增加而強度衰減之關係 49 圖 4-4 不同反應器內的平均光強度與藻類濃度之關係圖 53 圖 4-5 藻類培養於新型光生化反應器與平面培養池之生長曲線 56 圖 4-6 不同反應器內單位質量藻類的可吸光值與濃度之關係圖 57 圖 4-7 藻類培養於新型光生化反應器與平面培養池之產率 58 圖 4-8 初使的單位質量藻類可吸光值與其對應的產率關係圖 64 圖 4-9 藻類培養於平面培養池與其使用插板策略培養之生長曲線 66 圖 4-10 藻類培養於平面培養池與其使用插板策略培養之產率 67 圖 4-11 批次與半連續式培養藻類於新型光生化反應器之生長曲線 73 圖 4-12 批次與半連續式培養藻類於新型光生化反應器之產率 74

    1.Connemann J, Fischer J. “Biodiesel quality Y2K and market experiences with FAME,” CEN/TC 19 Automotive Fuels Millennium Symposion, The Netherlands: Amsterdam, 25-26 Nov. 1999

    2.Chisti Y. Biodiesel from microalgae. Biotechnology Advances 25: 294-306. 2007

    3.Grima, EM, Perez JAS, Camacho FG, Sevilla JMF, Fernandez FGA. Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Applied Microbiology and Biotechnology 41(1): 23-27. 1994

    4.Watanabe Y, Saiki H. Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Conversion and Management 38: 499-503. 1997

    5.Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R. Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enzyme and Microbial Technology 38: 135–141. 2006

    6.Yean-Chang C. Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195: 71–80. 2001

    7.Becker EW. Microalgae: biotechnology and microbiology. Cambridge University Press. UK. p.1. 1994

    8.葉育才,光合作用 植物生產力的生理基礎,國立編譯館,p.3.,1979 年

    9.Masojidek J, Koblizek M, Torzillo G. Photosynthesis in microalgae. In: Richmond A, editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science. UK. p.20-33. 2004

    10.Kirk JTO. Light and photosynthesis in aquatic systems.Cambridge University Press, Cambridge. 1994

    11.Lee YK, Low CS. Productivity of outdoor algal cultures in enclosed tubular photobioreactors. Biotechnology and Bioengineering 40: 1119–1122. 1992

    12.趙凱華、鐘錫華,光學,北京大學出版社,p.228-229、p.249-251,2004年

    13.雷仕湛,光學新世界: 非線性光學淺說,凡異出版社,p.22-24、p145-146,1989年

    14.Hu Q, Faiman D, Richmond A. Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. Journal of Fermentation and Bioengineering 85(2): 230-236. 1998

    15.Acie´n Ferna´ ndez FG, Garcı´a Camacho. F, Sa´ nchez Pe´ rez. JA, Ferna´ndez Sevilla JM, Grima EM. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering 55(5): 1997

    16.Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512: 33–37. 2004.

    17.Ogbonna JC, Tanaka H. Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology 12: 207–218. 2000.

    18.Goksan T, Durmaz Y, Go¨kpýnar S. Effects of light path lengths and initial culture density on the cultivation of Chaetoceros muelleri (Lemmermann, 1898) Aquaculture 217: 431–436. 2003

    19.Ogawa T, Kozawa H, Terui G. Studies on the growth of Spirulina platensis (II) growth kinetics of an autotrophic culture. Journal of Fermentation Technology 50: 143–149. 1971

    20.Rabe AE, Benoit RJ. Mean light intensity – A useful concept in correlating growth rates of dense cultures of microalgae. Biotechnology and Bioengineering 4: 377–390. 1962

    21.Camacho-Rubio F, Padial-Vico A, Martinez-Sancho ME. The effect of the mean intensity of light on the cultivation of Chlorella pyrenoidosa. International Chemical Engineering 25: 283–288. 1985

    22.Grima EM, Camacho FG, Sanchez Perez FA, Aci6n Fernndez FG, Ferndndez Sevilla JM. Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme and Microbial Technology 21: 375-381. 1997

    23.Mazzuca Sobczuk T, Garcı´a Camacho F, Camacho Rubio F, Acie´n Ferna´ ndez FG, Grima EM. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering 67(4): 465-475. 2000

    24.Carvalho AP, Meireles LA, F. Malcata FX. Microalgal Reactors: A review of enclosed system designs and performances. Biotechnology Progress 22: 1490-1506. 2006

    25.Hu Q, Richmond A. Productivity and photosynthetic efficiency of Spirulina platensis affected by light intensity, cell density and rate of mixing in a flat plate photobioreactor. Journal of Applied Phycology 8: 139-145. 1996

    26.Hu Q, Zarmi Y, Richmond A. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria) European Journal of Phycology 33: 165-171. 1998

    27.Degen J, Uebele A, Retze A; Schmid-Staiger U, Tro¨sch W. A novel airlift photobioreactor with baffles for improve light utilization through the flashing light effect. Journal of Biotechnology 92: 89–94. 2001

    28.Morita M, Watanabe Y, Saiki H. Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnology and Bioengineering 69(6): 693-698. 2000

    29.Endo H, Nakajima K, Chino R, Shirota M. Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agricultural and Biological Chemistry 38: 9–18. 1974

    30.Endo H, Hosoya H, Koibuchi T. Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate. Journal of Fermentation Technology 55: 369–379. 1977a

    31.Chen F; Johns MR. Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochemistry 29: 245–252. 1994

    32.Chen F; Johns MR. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochemistry 31: 601–604. 1996

    33.Endo H, Sansawa H, Nakajima K. Studies on Chlorella regularis, heterotrophic fast-growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiology 18: 199–205. 1977b

    34.Ogawa T, Aiba S. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnology and Bioengineering 3: 1121–1132. 1981

    35.Martinez F, Orus MI. Interaction between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101. Plant Physiology. 95: 1150–1155. 1991

    36.Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering 76: 408–410. 1993

    37.Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. Journal of Fermentation and Bioengineering 74: 17–20. 1992

    38.Haass D, Tanner W. Regulation of hexose transport in Chlorella vulgaris. Plant Physiology 53: 14–20. 1974

    39.Kamiya A, Kowallik W. Photoinhibition of glucose uptake in Chlorella. Plant Cell Physiology. 28: 611–619. 1987

    40.Yuan-Kun L. Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology 13: 307–315. 2001.

    41.Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 70: 313–321. 1999

    42.Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology 57:287–293. 2001

    43.Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances 20(7-8): 491-515. 2003

    44.Baynes S.M, Emerson L, Scott A P. Production of algae for use in the rearing of larval fish. Fisheries Research Technical Report 53: 13–18. 1979

    45.Pulz O, Scheibenbogen K. Photobioreactors: design and performance with respect to light energy input. In: Scheper T(ed) Bioprocess and algae reactor technology, apoptosis. Advances in biochemical engineering biotechnology 59: Springer, Berlin Heidelberg New York, p.123 1998

    46.Hoek C, Mann DG, Jahns HM. Algae: an introduction to phycology, USA: Press Syndicate of the University of Cambridge p.131-133. 1995

    47.張惟閔,微藻培養於新型光生化反應器之系統開發,國立清華大學化學工程研究所碩士畢業論文,2005年

    下載圖示 校內:2008-08-01公開
    校外:2008-08-01公開
    QR CODE