| 研究生: |
蔡文仁 Tsai, Wen-Jen |
|---|---|
| 論文名稱: |
利用共蒸鍍表面添加法探討鈉對硫化銅銦薄膜太陽能電池吸收層之影響 Deposition of Surface NaF Layer on CuIn Precursor via Co-evaporation and Its Effects on the Resulting CuInS2 Thin Film |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 硫化銅銦 、太陽能電池 、鈉摻雜 、硫化 |
| 外文關鍵詞: | CuInS2, solar cells, Na doping, sulfurization |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈉的添加是一個會影響CI(G)S太陽能電池效能的重要因子。然而目前大部分的研究著重在鈉與硒化銅銦鎵(CuInGaSe2)薄膜的關係,相較之下關於鈉的添加與硫化銅銦(CuInS2)薄膜的研究非常少。
因此,在論文中將討論在CuInS2中摻雜鈉後薄膜特性的變化。此外,我們使用了一種特殊的方法來製備含鈉之CuInS2薄膜。首先,以Cu及In二元共蒸鍍先形成Cu-In薄膜,接著在Cu及In沒有停止的情況下再加入NaF,變為Cu、In及NaF三元共蒸鍍以形成含鈉之Cu-In前驅物。NaF是在前驅物薄膜上層的部分,且製備了0, 5, 10, 15 nm四種NaF不同厚度。另一方面,Cu及In的總厚度分別是360與440 nm,也就是Cu/In比為1.8。在完成前驅物製備之後,立即在同一個腔體中進行硫化以成長含鈉之CuInS2薄膜。最後,將討論摻雜鈉後對CuInS2薄膜特性的影響。
接著,對含鈉之CuInS2薄膜做一系列的分析。鈉的添加增強了(112)的優選方位,這也指出了鈉的存在可使晶體結構更好。利用SIMS縱深分析觀察各元素成分在薄膜內的分布,其中以鈉的分布為觀察的重點。晶粒尺寸也發現會隨著鈉濃度的增加而變小。利用HRTEM觀察薄膜的微結構。拉曼光譜中顯示存在有一種次要的CIS CA的振動模式,且強度隨著鈉濃度而增加,而主要的CIS CH振動模式的拉曼位移也因此出現了藍移的現象。電性方面,鈉的添加使薄膜的電阻率下降及電洞載子濃度上升。光學吸收係數則隨著鈉濃度增加而下降,在此粗糙度及晶粒尺寸對於光學吸收係數的影響有一個比較,同時,薄膜能隙大小在文中也有討論。最後,在眾多分析中似乎皆存在著一個臨界的鈉濃度,使鈉摻雜後的反應開始發生。
The addition of Na has been found to be an important factor that affects the performance of CI(G)S solar cells. While most of study focus on the addition of Na into CuInGaSe2 thin films, there are much less research for CuInS2 about Na doping.
So, this study examines the addition of Na into CuInS2 (CIS) thin films. Moreover, an alternative approach has been used to incorporate Na into CIS thin films. Two source thermal co-evaporation (Cu and In) was first performed to obtain Cu-In layers. And three source thermal co-evaporation (Cu, In and NaF) then followed subsequently to produce Na-doped Cu-In precursor films having different Na concentrations. The NaF is in the upper part of precursor films with different thickness of 0, 5, 10, 15-nm. On the other hand, the thicknesses of Cu and In are 360nm and 440nm at all of samples, separately. And the Cu/In ratio is 1.8. After thermal co-evaporation, the precursor films were immediately sulfurized in the same evaporation champer to form Na-doped CuInS2 thin films. Effects of Na on the characteristics of the CIS are addressed and discussed.
Then, a series of investigations for Na-doped CuInS2 thin films have been achieved. The (112) preferred orientation was enhanced by addition of Na, indicating a better crystalline structure with Na doping. The elemental distribution along the film thickness was examined by SIMS depth profile. The grain sizes of CIS thin films were found to decrease because of Na doping. The microstructures of thin films were investigated by HRTEM. Raman spectra show the existence of a minor CIS CA mode, and the intensity of the CA mode in general increases with Na concentration. And blue shift of the CIS Raman CH mode occurs as a result. The doping of Na was also found to reduce the film resistivity (increase the film conductivity) and increase the hole concentration in the films. The absorption coefficient was found to decrease with Na concentration due to the effect of roughness and grain size. The energy band gap was also investigated in the article. Finally, there seems to be a threshold concentration for the effect of Na to occur.
1. M. Grätzel and B. O'Regan, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353: p. 737-740.
2. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, 19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 2008. 16: p. 235-239.
3. S. Ye, X. Tan, M. Jiang, B. Fan, K. Tang and S. Zhuang, Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate. APPIED OPTICS, 2010. 49(9): p. 1662-1665.
4. S. Ishizuka, A. Yamada, M. M. Islam, H. Shibata, P. Fons, T. Sakurai, K.Akimoto and Shigeru, Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films. J. Appl. Phys., 2009. 106(034908): p. 1-6.
5. S. Ishizuka, A. Yamada, P. Fons and S. Niki, Flexible Cu(In, Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material. Journal of Renewable and Sustainable Energy, 2009. 1(1).
6. P. T. Erslev, J. W. Lee, W. N. Shafarman and J. D. Cohen, The influence of Na on metastable defect kinetics in CIGS materials. Thin Solid Films, 2009. 517(7): p. 2277-2281.
7. R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk and H. W. Schock, The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films, 2009. 517(7): p. 2187-2190.
8. R. Caballero, C. A. Kaufmann, T. Eisenbarth, T. Unold, S. Schorr, R. Hesse, R. Klenk and H.-W. Schock, The effect of NaF precursors on low temperature growth of CIGS thin film solar cells on polyimide substrates. physica status solidi (a), 2009. 206(5): p. 1049-1053.
9. S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai and S. Niki, Alkali incorporation control in Cu(In, Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency. Applied Physics Letters, 2008. 93(12).
10. J. H. Yun, K. H. Kim, M. S. Kim, B. T. Ahn, S. J. Ahn, J. C. Lee and K. H. Yoon, Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate. Thin Solid Films, 2007. 515(15): p. 5876-5879.
11. D. Rudmann, D. Bremaud, H. Zogg and A. N. Tiwari, Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils. Journal of Applied Physics, 2005. 97(8).
12. D. Rudmann, D. Bremaud, A. F. da Cunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg and A. Tiwari, Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films, 2005. 480: p. 55-60.
13. J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh and H. W. Schock, ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. in Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE. 1993.
14. M. Zribi, M. Kanzari and B. Rezig, Post-growth annealing treatment effects on properties of Na-doped CuInS2 thin films. Materials Science and Engineering B, 2008. 149: p. 1-6.
15. T. T. John, T. Sebatian, C. S. Kartha, K. P. Vijayakumar, T. Abe and Y. Kashiwaba, Effects of incorporation of Na in spray pyrolysed CuInS2 thin films. Physica B, 2007. 388: p. 1-9.
16. M. Zribi, M. Kanzari and B. Rezig, Optical constants of Na-doped CuInS2 thin films. Materials Letters, 2006. 60(1): p. 98-103.
17. J. M. Peza-Tapia, V. M. Sanchez-Resendiz, M. L. Albor-Aguilera, J. J. Cayente-Romero, L. R. De Leon-Gutierrez and M. Ortega-Lopez, Electrical and optical characterization of Na: CuInS2 thin films grown by spray pyrolysis. Thin Solid Films, 2005. 490(2): p. 142-145.
18. M. Zribi, M. Kanzari and B. Rezig, Effects of Na incorporation in CuInS2 thin films. European Physical Journal-Applied Physics, 2005. 29(3): p. 203-207.
19. I. Luck, J. Kneisel, K. Siemer, J. Bruns, R. Scheer, R. Klenk, N. Janke and D. Braunig, Influence of Na on the properties of Cu-rich prepared CuInS2 thin films and the performance of corresponding CuInS2/CdS/ZnO solar cells. Solar Energy Materials and Solar Cells, 2001. 67(1-4): p. 151-158.
20. T. Yamamoto, K. Fukuzaki and S. Kohiki, Influence of incorporation of Na on p-type CuInS2 thin films. Applied Surface Science, 2000. 159: p. 345-349.
21. T. WATANABE and T. YAMAMOTO, Control of Defects in CuInS2 Thin Films by Incorporation of Na and O. Japanese Journal of Applied Physics, 2000. 39: p. L1280-L1282.
22. R. Scheer, I. Luck, M. Kanis, R. Kurps and D. Kruger, Effect of sodium and oxygen doping on the conductivity of CuInS2 thin films. Thin Solid Films, 2000. 361: p. 468-472.
23. T. Watanabe, H. Nakazawa, M. Matsui, H. Ohbo and T. Nakada, et al., The influence of sodium on the properties of CuInS2 thin films and solar cells. Solar Energy Materials and Solar Cells, 1997. 49(1-4): p. 357-363.
24. D. M. CHAPIN, C. S. FULLER and G. L. PEARSON, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25: p. 676-677.
25. S. Wagner, J. L. Shay, Migliora.P and H. M. Kasper, CuInSe2-CdS heterojunction photovoltaic detectors. Applied Physics Letters, 1974. 25(8): p. 434-435.
26. L. L. Kazmerski, F. R. White and G. K. Morgan, Thin-film CuInSe2 -CdS heterojunction solar-cells. Applied Physics Letters, 1976. 29(4): p. 268-270.
27. L. L. Kazmerski and G. A. Sanborn, CuInS2 thin-film homojunction solar-cells. Journal of Applied Physics, 1977. 48(7): p. 3178-3180.
28. R. A. Mickelsen and W. S. Chen, Conference Record of 15th IEEE Photovoltaic Specialists Conference, 1981: p. 800-804.
29. R. R. Potter, C. Eberspacher and L. B. Fabick, Conference Record of 18th IEEE Photovoltaic Specialists Conference, 1985: p. 1659-1664.
30. H. J. Lewerenz, H. Goslowsky, K. D. Husemann and S. Fiechter, Efficient solar-energy conversion with CuInS2. Nature, 1986. 321(6071): p. 687-688.
31. K. Mitchell, C. Eberspacher, J. Ermer and D. Pier, Single and tandem junction CuInSe2 cell and module technology. Conference Record of 20th IEEE Photovoltaic Specialists Conference, 1988: p. 1384-1389.
32. K. W. Mitchell, G. A. Pollock and A. V. Mason, 7.3% efficient CuInS2 solar cell. Conference Record of 20th IEEE Photovoltaic Specialists Conference, 1988: p. 1542-1544.
33. T. Walter, A. Content, K. O. Velthaus and H. W. Schock, Solar-cells based on CuIn(Se,S)2. Solar Energy Materials and Solar Cells, 1992. 26(4): p. 357-368.
34. D. Braunger, T. Dűrr, D. Hariskos, C. Kőble, T. Walter, N. Wieser and H. W. Schock, Improved open circuit voltage in CuInS2-based solar cells. Conference Record of 25th IEEE Photovoltaic Specialists Conference, 1996: p. 1001-1004.
35. L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K. O. Velthaus and H. W. Schock, ZnO/CdS/CuInSe2 thin-film solar-cells with improved performance. Applied Physics Letters, 1993. 62(6): p. 597-599.
36. 蔡進譯, 超高效率太陽電池-從愛因斯坦的光電效應談起. 物理雙月刊, 2005. 27卷(5期): p. 702-704.
37. J. H. Scofield, A. Duda, D. Albin, B. L. Ballard and P. K. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar-cells. Thin Solid Films, 1995. 260(1): p. 26-31.
38. D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F. V. Kurdesau, A. N. Tiwari and M. Dobeli, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells. Thin Solid Films, 2005. 480: p. 433-438.
39. T. Wada, N. Kohara, S. Nishiwaki and T. Negami, Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films, 2001. 387(1-2): p. 118-122.
40. D. Hariskos, S. Spiering and M. Powalla, Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films, 2005. 480: p. 99-109.
41. D. C. Look, J. W. Hemsky and J. R. Sizelove, Residual Native Shallow Donor in ZnO. Physical Review Letters, 1999. 82(12): p. 2552.
42. B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Materials Science and Engineering B, 2000. 71: p. 301-305.
43. S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima and S. Niki, Fabrication of wide-gap Cu(ln(1-x)Ga(x))Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness. Solar Energy Materials and Solar Cells, 2005. 87(1-4): p. 541-548.
44. J. Eberhardt, J. Cieslak, H. Metzner, T. Hahn, R. Goldhahn, F. Hudert, J. Krausslich, U. Kaiser, A. Chuvilin, U. Reislohner and W. Witthuhn, Epitaxial and polycrystalline CuInS2 layers: Structural metastability and its influence on the photoluminescence. Thin Solid Films, 2009. 517(7): p. 2248-2251.
45. A. Antony, A. S. Asha, R. Yoosuf, R. Manoj and M. K. Jayaraj, Growth of CuInS2 thin films by sulphurisation of Cu-In alloys. Solar Energy Materials and Solar Cells, 2004. 81(4): p. 407-417.
46. J. Klaer, K. Siemer, I. Luck and D. Braunig, 9.2% efficient CuInS2 mini-module. Thin Solid Films, 2001. 387(1-2): p. 169-171.
47. M. Gossla, T. Hahn, H. Metzner, J. Conrad and U. Geyer, Thin CuInS2 films by three-source molecular beam deposition. Thin Solid Films, 1995. 268(1-2): p. 39-44.
48. M. Krunks, V. Mikli, O. Bijakina, H. Rebane, A. Mere, T. Varema and E. Mellikov, Composition and structure of CuInS2 films prepared by spray pyrolysis. Thin Solid Films, 2000. 361: p. 61-64.
49. T. Yukawa, K. Kuwabara and K. Koumoto, Electrodeposition of CuInS2 from aqueous solution .2. Electrodeposition of CuInS2 film. Thin Solid Films, 1996. 286(1-2): p. 151-153.
50. R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer and U. Ruhle, Solar cells based on CuInS2 - an overview. Thin Solid Films, 2005. 480: p. 509-514.
51. K. Granath, M. Bodegard and L. Stolt, The effect of NaF on Cu(In, Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 2000. 60(3): p. 279-293.
52. P. S. Vasekar and N. G. Dhere, Effect of sodium addition on Cu-deficient CuIn1-xGaxS2 thin film solar cells. Solar Energy Materials and Solar Cells, 2009. 93(1): p. 69-73.
53. M. B. Ard, K. Granath and L. Stolt, Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors. Thin Solid Films, 2000. 361: p. 9-16.
54. D. Rudmann, A. F. da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A. N. Tiwari and G. Bilger, Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Applied Physics Letters, 2004. 84(7): p. 1129-1131.
55. L. Kronik, D. Cahen and H. W. Schock, Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Advanced Materials, 1998. 10(1): p. 31-36.
56. D. Cahen and R. Noufi, Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar-cell performance. Applied Physics Letters, 1989. 54(6): p. 558-560.
57. M. A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander and R. Noufi, On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers. in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE. 1997.
58. J. E. Granata, J. R. Sites, S. Asher and R. J. Matson, Quantitative incorporation of sodium in CuInSe2 and Cu(In,Ga)Se2 photovoltaic devices. in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE. 1997.
59. D. Rudmann, G. Bilger, M. Kaelin, F. J. Haug, H. Zogg and A. N. Tiwari, Effects of NaF coevaporation on structural properties of Cu(In,Ga)Se2 thin films. Thin Solid Films, 2003. 431: p. 37-40.
60. W. Jiang, L. Zhang, Q. He, F. Li, Z. Zhou, W. Liu, B. Li, C. Li and Y. Sun, The influence of Na on elements diffusion of Cu(In,Ga)Se2 thin films. in Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE. 2008.
61. T. Watanabe, H. Nakazawa and M. Matsui, Improvement of the Electrical Properties of Cu-Poor CuInS2 Thin Films by Sodium Incorporation. Japanese Journal of Applied Physics, 1998. 37(Part 2, No. 11B): p. L1370-L1372.
62. U. Rau, M. Schmitt, D. Hilburger, F. Engelhardt, O. Seifert, J. Parisi, W. Riedl, J. Rimmasch and F. Karg, Influence of Na and S incorporation on the electronic transport properties of Cu(In,Ga)Se2 solar cells. in Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE. 1996.
63. A. Rockett, M. Bodegard, K. Granath and L. Stolt, Na incorporation and diffusion in CuIn1-xGaxSe2. in Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE. 1996.
64. D. W. Niles, M. Al-Jassim and K. Ramanathan, Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(1): p. 291-296.
65. 汪建民, 材料分析.
66. F. Weibke and H. Eggers, Das Zustandsdiagramm des Systems Kupfer-Indium. Zeitschrift für anorganische und allgemeine Chemie, 1934. 220(3): p. 273-292.
67. N. Orbey, G. A. Jones, R. W. Birkmire and T. W. F. Russell, Copper-indium alloy transformations. Journal of Phase Equilibria, 2000. 21(6): p. 509-513.
68. M. Gossla, H. Metzner and H. E. Mahnke, Coevaporated Cu-In films as precursors for solar cells. Journal of Applied Physics, 1999. 86(7): p. 3624-3632.
69. R. S. M. Weber, z H. J. Lewerenz, H. Jungblut, and U. Sto¨rkel, Microroughness and Composition of Cyanide-Treated CuInS2. Journal of The Electrochemical Society, 2002. 149(1): p. G77-G84.
70. R. Scheer, R. Klenk, J. Klaer, I. Luck, CuInS2 based thin film photovoltaics. Solar Energy, 2004. 77: p. 777-784.
71. C. Dzionk, H. Metzner, S. Hessler and H. E. Mahnke, Phase formation during the reactive annealing of Cu-In films in H2S atmosphere. Thin Solid Films, 1997. 299(1-2): p. 38-44.
72. F. A. Lewis, K. Kandasamy and X. Q. Tong, Lattice strain gradient effects on hydrogen diffusion parameter calculations. International Journal of Hydrogen Energy, 2002. 27(6): p. 687-694.
73. H. G. Robinson, M. D. Deal, G. Amaratunga, P. B. Griffin, D. A. Stevenson and J. D. Plummer, Modeling uphill diffusion of Mg implants in GaAs using suprem-iv. Journal of Applied Physics, 1992. 71(6): p. 2615-2623.
74. M. Ihaddadene, J. Marcon, M. Idrissi-Benzohra, K. Ketata, S. Demichel, J. Flicstein, J. L. Pelouard and M. Ketata, Anomalous thermal redistribution of beryllium implanted in InGaAs: a possible interaction with extended defects. Computational Materials Science, 2002. 24(1-2): p. 257-261.
75. R. Scheer, K. Diesner and H. J. Lewerenz, Experiments on the microstructure of evaporated CuInS2 thin films. Thin Solid Films, 1995. 268(1-2): p. 130-136.
76. W. H. Koschel and M. Bettini, Zone-centered phonons in AIBIIIS2 chalcopyrites. physica status solidi (b), 1975. 72(2): p. 729-737.
77. N. M. Gasanly, S. A. El-Hamid, L. G. Gasanova and A. Z. Magomedov, Vibrational Spectra of Spinel - Type Compound CuIn5S8. physica status solidi (b), 1992. 169(2): p. K115-K118.
78. J. Alvarez-Garcia, J. Marcos-Ruzafa, A. Perez-Rodriguez, A. Romano-Rodriguez, J. R. Morante and R. Scheer, MicroRaman scattering from polycrystalline CuInS2 films: structural analysis. Thin Solid Films, 2000. 361: p. 208-212.
79. A. Perez-Rodriguez, J. Alvarez-Garcia, J. Marcos-Ruzafa, A. Romano-Rodriguez, J. R. Morante, R. Scheer, J. Klaer and R. Klenk, Raman scattering and microstructural analysis of polycrystalline CuInS2 films for solar cell devices. 2003: SPIE.
80. S. Shirakata, H. Kubo, C. Hamaguchi and S. Isomura, Raman Spectra of CuInSe2 Thin Films Prepared by Chemical Spray Pyrolysis. Japanese Journal of Applied Physics, 1997. 36(Part 2, No. 10B): p. L1394-L1396.
81. J. Alvarez-Garcia, A. Perez-Rodriguez, B. Barcones, A. Romano-Rodriguez, J. R. Morante, A. Janotti, S. H. Wei and R. Scheer, Polymorphism in CuInS2 epilayers: Origin of additional Raman modes. Applied Physics Letters, 2002. 80(4): p. 562-564.
82. E. Rudigier, B. Barcones, I. Luck, T. Jawhari-Colin, A. Perez-Rodriguez and R. Scheer, Quasi real-time Raman studies on the growth of Cu-In-S thin films. Journal of Applied Physics, 2004. 95(9): p. 5153-5158.
83. B. Barcones, A. Pérez-Rodríguez, L. Calvo-Barrio, A. Romano-Rodríguez, J. R. Morante, E. Rudigier, I. Luck, J. Djordjevic and R. Scheer, In situ and ex situ characterisation of thermally induced crystallisation of CuInS2 thin films for solar cell. Thin Solid Films, 2005. 480-481: p. 362-366.
84. J. Alvarez-Garcia, Characterisation of CuInS2 films for solar cell applications by Raman Spectroscopy. Ph.D. Thesis, 2002. Universitat de Barcelona, Departament d'Electrònica, Spanish.
85. C. Guillen, J. Herrero, M. T. Gutierrez and F. Briones, Structure, morphology and optical properties of CuInS2 thin films prepared by modulated flux deposition. Thin Solid Films, 2005. 480: p. 19-23.
86. M. Krunks, O. Bijakina, T. Varema, V. Mikli and E. Mellikov, Structural and optical properties of sprayed CuInS2 films. Thin Solid Films, 1999. 338(1-2): p. 125-130.
校內:2012-08-03公開