簡易檢索 / 詳目顯示

研究生: 趙世寧
Chao, Shih-Ning
論文名稱: 以分子動力學研究tRNA-Lys3與修飾HIV-1引子結合區之交互作用
Study the interactions between tRNA-Lys3 and modified HIV-1 primer binding site using molecular dynamics simulations
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: HIV-1tRNA-Lys3反轉錄分子動力學引子結合區
外文關鍵詞: HIV-1, tRNA-Lys3, reverse transcription, molecular dynamics, primer binding site
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • HIV病毒是一種反轉錄病毒,其病毒RNA上的18個引子結合區(PBS)會與宿主細胞的tRNA-Lys3之反引子結合序列(anti-PBS)進行互補配對,開啟一連串反轉錄步驟。本文以分子動力學研究觀察此一作用區域之動態行為,分析分子穩定性及結構特徵,顯示出tRNA-Lys3中以及病毒PBS片段上較不穩定的部分。此外,本文進一步比較不同PBS鹼基序列與tRNA-Lys3交互作用的差異性,藉此了解tRNA-Lys3的反引子結合序列及引子結合序列對反轉錄作用產生之影響。由研究結果顯示,PBS特定區域的變異會影響tRNA-PBS配對的活躍性,而此結果可供其他研究者在HIV-1的病毒與變異PBS結合的活性實驗結果做一相互印證。

    Virus HIV-1 is a kind of retrovirus, and RNA primer binding of virus (PBS) will complementary interact with anti-primer binding site(anti-PBS) in tRNALys3. There are 18 base pairs and a series of reverse transcription steps that will be produced during the complementary interactions of PBS and anti-PBS. In this study, molecular dynamics is utilized to observe the dynamic behaviors, molecular stability and the structure of tRNA-Lys3. The results shown the unstable part in tRNALys3.To realize the efficiency of reverse transcription, the difference between the interactions of primer binding site (PBS) and tRNA-Lys3 with different RNA base sequence are also compared in this study. The results shown that the HIV-1 activity will be affected by the specific modification on the base sequence of PBS

    摘 要 III Abstract IV 致 謝 V 第一章 緒論 1 1-1 研究背景 1 1-1-1 遺傳物質簡介 1 1-1-2 人類免疫缺陷病毒的研究背景 3 1-1-3 轉移核糖核酸(transfer RNA)之簡介 7 1-1-4 HIV-1 Life Cycle 10 1-1-4 HIV-1病毒反轉錄機制 13 1-2文獻回顧 16 1-3研究動機 29 1-4本文組織架構 31 第二章 分子模型的建構與模擬方法 33 2-1 物理模型建構 33 2-1-1分子動力學模擬軟體 34 2-1-2 RCSB資料庫 36 2-1-3 PRODRG 2.5格式轉換 38 2-1-4 修飾核苷酸的建檔設置 39 2-2 分子動力學理論 43 2-2-1 勢能函數介紹 44 2-2-3 加速運算方法 46 2-3 模擬流程 51 第三章 結果與討論 52 3-1 能量分析 52 3-2 均方根偏差(RMSD)分析 53 3-3 均方根波動(RMSF)分析 56 3-4 氫鍵(hydrogen bond)分析 62 3-5 鹼基堆疊(base stacking)分析 65 第四章 結論與展望 75 4-1 結論 75 4-2 未來展望 78 參考文獻 Reference 79 附錄 模擬參數設定 86 能量極小化:最陡梯度法(SD) 86 能量極小化:共軛梯度法(CG) 87 模擬前預處理(PR) 88 Molecular Dynamics(MD)模擬 90

    1. Oswald T. Avery, C.M.M., and Maclyn McCarty, Studies On The Chemical Nature Of The Substance Inducingtransformation Of Pneumococcal Types. The Journal of Experimental Medicine, 1944. 79(2): p. 137-158.
    2. F.H.C., W.J.D.a.C., A Structure for Deoxyribose Nucleic Acid. Nature, 1953. 171: p. 737-738.
    3. Rasmussen, N., The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930-1965 (review). Bulletin of the History of Medicine, 2003. 77(1): p. 221-223.
    4. Anders h. Lund, m.d., jette lovmand, poul jørgensen, and a.f.s. Pedersen, Complementation of a Primer Binding Site-Impaired Murine Leukemia Virus-Derived Retroviral Vector by a Genetically Engineered tRNA-Like Primer. Journal Of Virology, 1996. 71(2): p. 1191-1195.
    5. Monini, P., et al., Antitumour effects of antiretroviral therapy. Nature Reviews Cancer, 2004. 4(11): p. 861-875.
    6. Calderon, E.J., et al., Pneumocystis infection in humans: diagnosis and treatment. Expert Review of Anti-Infective Therapy, 2010. 8(6): p. 683-701.
    7. Mesri, E.A., E. Cesarman, and C. Boshoff, Kaposi's sarcoma and its associated herpesvirus. Nature Reviews Cancer, 2010. 10(10): p. 707-719.
    8. Marx, J.L., New disease baffles medical community. Science, 2003. 217 (4560): p. 618-621.
    9. Centers for Disease Control and Prevention,. HIV/AIDS Surveillance Report, 2005. 17.
    10. Senger, B., et al., The Presence Of A D-Stem But Not A T-Stem Is Essential For Triggering Aminoacylation Upon Anticondon Binding In Yeast Methionine Transfer-RNA. Journal of Molecular Biology, 1995. 249(1): p. 45-58.
    11. World Health Organization, http://www.who.int/hiv/data/en/
    12. Barresinoussi, F., et al., Isolation of a T-lymphotropi Retrovirus from a patient at risk for acquired immune-deficiency syndrome (AIDS). Science, 1983. 220(4599): p. 868-871.
    13. Leis, J., A. Aiyar, and D. Cobrinik, 3 Regulation of Initiation of Reverse Transcription of Retroviruses. 1993. 1993.
    14. CLARK, B.F.C., The crystal structure of tRNA. J. Biosci, 2006. 31(4): p. 453-457.
    15. Catherine Isel, et al., Initiation of Reverse Transcripion of HIV-1: Secondary Structure of the HIV-1 RNA/tRNA|rlmbopopnbop|Lys|clobop|3 (Template/Primer) Complex J. Mol. Biol., 1995. 247: p. 236–250.
    16. Mathews CK, v.H.K., Ahern KG Biochemistry 2000: San Francisco: Addison Wesley Longman.
    17. Tor, Y., Targeting RNA with Small Molecules. ChemBioChem, 2003. 4(10): p. 998-1007.
    18. Joseph M. Watts, et al., Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 2009. 460(7256): p. 711-716.
    19. Loeb, L.A. and R.J. Monnat, DNA polymerases and human disease. Nature Reviews Genetics, 2008. 9(8): p. 594-604.
    20. Klein, D.W., L.M. Prescott, and J. Harley, Microbiology. 1993: Dubuque, Iowa: Wm. C. Brown.
    21. Molling, K., et al., Association Of Viral Reverse Transcriptase With An Enzyme Degrading Rna Moiety Of RNA-DNA Hybrids. Nature-New Biology, 1971. 234(51): p. 240-&.
    22. Verma, I.M., Studies On Reverse-Transcriptase Of Rna Tumor-Viruses .1. Localization Of Thermolabile Dna-Polymerase And Rnase H Activities On One Polypeptide. Journal of Virology, 1975. 15(1): p. 121-126.
    23. Ashok aiyar, z.g., and jonathan leis, A Specific Orientation of RNA Secondary Structures Is Requires for initation of Reverse Transcription. Journal Of Virology, 1993. 68(2): p. 611-618.
    24. Kleiman, L., tRNALys3: The Primer tRNA for Reverse Transcription in HIV-1. IUBMB Life, 2002. 53: p. 107-104.
    25. Baltimor.D, Viral Rna-Dependent DNA Polymerase - RNA-Dependent DNA Polymerase In Virions Of RNA Tumour Viruses. Nature, 1970. 226(5252): p. 1209-&.
    26. Temin, H.M. and S. Mizutani, Viral Rna-Dependent DNA Polymerase - RNA-Dependent DNA Polymerase In Virions Of Rous Sarcoma Virus. Nature, 1970. 226(5252): p. 1211-&.
    27. Atze t. Das, b.k., and ben berkhout, Reduced Replication of Human Immunodeficiency Virus Type 1Mutants That Use Reverse Transcription Primersother than the Natural tRNA(Lys3). Journal Of Virology, 1995. 69(5): p. 3090-3097.
    28. James H. Strauss, E.G.S., ed. Viruses and Human Disease. 2008, Academic Press. 215.
    29. Bercoff, R.P., ed. The Molecular Basis of Viral Replication. 1986, Plenum Press. 82.
    30. Zhou, T., et al., Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 2010. 329(5993): p. 811-817.
    31. Watts, J.M., et al., Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 2009. 460(7256): p. 711-U87.
    32. Emini, E.A., ed. The Human Immunodeficiency Virus 1986. 4.
    33. John k. Wakefield, s.-m.k., and casey d. Morrow, Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His). JOURNAL OF VIROLOGY, 1996. 70(2): p. 966-975.
    34. Na Ni, W.X.a.C.D.M., Importance of A-loop complementarity with tRNA-His anticodon for continued selection of tRNA-His as the HIV reverse transcription primer. Virology Journal, 2007. 4(4).
    35. Beerens, N., F. Groot, and B. Berkhout, Initiation of HIV-1 reverse transcription is regulated by a primer activation signal. Journal of Biological Chemistry, 2001. 276(33): p. 31247-31256.
    36. Geerdes, H.A.M. and C.W. Hilbers, Iminoproton Nmr-Spectrum Of Yeast Transfer-Rna Phe Predicted From Crystal Coordinates. Nucleic Acids Research, 1977. 4(1): p. 207-221.
    37. Sussman, J.L., et al., Crystal-Structure Of Yeast Phenylalanine Transfer-RNA .1. Crystallographic refinement. Journal of Molecular Biology, 1978. 123(4): p. 607-630.
    38. Holbrook, S.R., et al., Crystal-Structure Of Yeast Phenylalanine Transfer-RNA .2. Structural Features And Functional Implications. Journal of Molecular Biology, 1978. 123(4): p. 631-660.
    39. Banerjee, A.K. and S. Barik, Gene-Expression Of Vesicular Stomatitis-Virus Genome Rna. Virology, 1992. 188(2): p. 417-428.
    40. Manfred raba. Klaus limburg. Margaret burghagen, j.r.k.m.s., joyce t. Heckman. Uttam l. Rajbhandary. And hans j. Gross, Nucleotide Sequence of Three Isoaccepting Lysine tRNAs from Rabbit Liver and SV40-Transformed Mouse Fibroblasts. Eur.J. Biochem, 1979. 97: p. 305-318.
    41. Das, A.T., et al., Human immunodeficiency virus uses tRNALys,3 as primer for reverse transcription in HeLa-CD4+ cells. FEBS Letters, 1994. 341(1): p. 49-53.
    42. Litvak, S., et al., Priming Of HIV Replication By tRNA(Lys3) - Role Of Reverse-Transcriptase. Trends in Biochemical Sciences, 1994. 19(3): p. 114-118.
    43. Arts, E.J., et al., Restoration of tRNA(3)(Lys)-primed (-)-strand DNA synthesis to an HIV-1 reverse transcriptase mutant with extended tRNAs - Implications for retroviral replication. Journal of Biological Chemistry, 1996. 271(15): p. 9054-9061.
    44. Aiyar, A., Z. Ge, and J. Leis, A Specific Orientation Of Rna Secondary Structures Is Required For Initiation Of Reverse Transcription. Journal of Virology, 1994. 68(2): p. 611-618.
    45. Arts, E.J., et al., Mutating a region of HIV-1 reverse transcriptase implicated in tRNA(Lys-3) binding and the consequences for (-)-strand DNA synthesis. Journal of Biological Chemistry, 1998. 273(23): p. 14523-14532.
    46. Li, X.G., et al., Effects Of Alterations Of Primer-Binding Site Sequences On Human-Immunodeficiency-Virus Type-1 Replication. Journal of Virology, 1994. 68(10): p. 6198-6206.
    47. Isel, C., et al., Modified Nucleotides Of Transfer Rna(3)(Lys) Modulate Primer Template Loop-Loop Interaction In The Initiation Complex Of Hiv-1 Reverse Transcription. Journal of Biological Chemistry, 1993. 268(34): p. 25269-25272.
    48. Kang, S.M., Z.J. Zhang, and C.D. Morrow, Identification of a sequence within U5 required for human immunodeficiency virus type 1 to stably maintain a primer binding site complementary to tRNA(Met). Journal of Virology, 1997. 71(1): p. 207-217.
    49. Hendrik Huthoff, et al., On the importance of the primer activation signal for initiation of tRNAlys3-primed reverse transcription of the HIV-1 RNA genome. Nucleic Acids Research,, 2003. 31(17).
    50. Liu, Q.Z., et al., Molecular mechanism for transcription and replication of RNA virus. Biodiversity Science, 2001. 9: p. 7.
    51. Jiang, M., et al., Identification Of Transfer-RNAs Incorporated Into Wild-Type And Mutant Human-Immunodeficiency-Virus Type-1. Journal of Virology, 1993. 67(6): p. 3246-3253.
    52. Liang, C., et al., Roles of the human immunodeficiency virus type 1 Pol protein and the primer binding site in the placement of primer tRNA(3)(Lys) onto viral genomic RNA. Journal of Virology, 1997. 71(12): p. 9075-9086.
    53. Yun Li, Z.Z., Sang-Moo Kang, James L. Buescher, and Casey D. Morrow, Insights into the Interaction between tRNA and Primer Binding Site from Characterization of a Unique HIV-1 Virus Which Stably Maintains Dual PBS Complementary to tRNA(Gly) and tRNA(His). VIROLOGY, 1997. 238: p. 273-282.
    54. Han, W., et al., Inhibition of human immunodeficiency virus type 1 replication by siRNA targeted to the highly conserved primer binding site. Virology, 2004. 330(1): p. 221-232.
    55. Reyes-Darias, J.A., F.J. Sanchez-Luque, and A. Berzal-Herranz, Inhibition of HIV-1 Replication by RNA-Based Strategies. Current Hiv Research, 2008. 6(6): p. 500-514.
    56. Dupuy, L.C., et al., Probing the Importance of tRNA Anticodon: Human Immunodeficiency Virus Type 1 (HIV-1) RNA Genome Complementarity with an HIV-1 That Selects tRNAGlu for Replication. Journal of Virology, 2003. 77(16): p. 8756-8764.
    57. Rédei, G.P., ed. Genetics manual: current theory, concepts, terms 1998, World Scientific Publishing: Minnesota USA.
    58. Lewin, B., Genes VIII. 2004: Prentice Hall.
    59. Margham, W.G.H.a.J.P., HarperCollins Dictionary of Biology. 1999: Owl Publishing House.
    60. Ni, N. and C.D. Morrow, Impact of forced selection of tRNAs on HIV-1 replication and genome stability highlight preferences for selection of certain tRNAs. Virus Research, 2007. 124(1-2): p. 29-37.
    61. Alder, B.J. and T.E. Wainwright, Phase Transition for a Hard Sphere System. The Journal of Chemical Physics, 1957. 27(5): p. 1208-1209.
    62. Lennard-Jones, J.E., Cohesion. Proceedings of the Physical Society 1931. 43: p. 461-482.
    63. Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996. 14(1): p. 33-38.
    64. Scott, W.R.P., et al., The GROMOS biomolecular simulation program package. Journal of Physical Chemistry A, 1999. 103(19): p. 3596-3607.
    65. Moody, G., Rebel Code: Linux And The Open Source Revolution. 1st edition ed. 2002: Basic Books.
    66. RCSB PDB Website, http://www.pdb.org/pdb/home/home.do
    67. Hwang, M.J., T.P. Stockfisch, and A.T. Hagler, Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules. Journal of the American Chemical Society, 1994. 116(6): p. 2515-2525.
    68. Schüttelkopf, A.W. and D.M.F. Van Aalten, PRODRG: a tool for high-throughput crystallography of protein--ligand complexes. Acta Crystallographica: Section D (Wiley-Blackwell), 2004. 60(8): p. 1355-1363.
    69. Chen, J. and J.R. Patton, Mouse pseudouridine synthase 1: gene structure and alternative splicing of pre-mRNA. Biochem. J., 2000. 352(2): p. 465-473.
    70. HyperChem® Release 7.0 for Windows. Reference Manual Volume 1. 2002: HyperCube,Inc.
    71. HyperChem® Release 7.0 for Windows. Reference Manual Volume 2. 2002: Hypercube, Inc.
    72. HyperChem® Modules. Part 1 HyperChem Data Part 2 HyperNMR. 2001: Hypercube, Inc.
    73. van Gunsteren, W.F., X. Daura, and A.E. Mark, GROMOS Force Field, in Encyclopedia of Computational Chemistry. 2002, John Wiley & Sons, Ltd.
    74. Warwicker, J., Continuum Dielectric Modeling Of The Protein Solvent System, And Calculation Of The Long-Range Electrostatic-Field Of The Enzyme Phosphoglycerate Mutase. Journal of Theoretical Biology, 1986. 121(2): p. 199-210.
    75. Zhu, Z.Y., A. Sali, and T.L. Blundell, A Variable Gap Penalty-Function And Feature Weights For Protein 3-D Structure Comparisons. Protein Engineering, 1992. 5(1): p. 43-51.
    76. Ott, K.-H. and B. Meyer, Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations. Journal of Computational Chemistry, 1996. 17(8): p. 1068-1084.
    77. Maple, J.R., et al., Derivation Of Class-Ii Force-Fields .1. Methodology And Quantum Force-Field For The Alkyl Functional-Group And Alkane Molecules. Journal of Computational Chemistry, 1994. 15(2): p. 162-182.
    78. Cho, A.E., et al., Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. Journal of Computational Chemistry, 2005. 26(9): p. 915-931.
    79. Lifson, S. and P.S. Stern, Born-Oppenheimer Energy Surfaces Of Similar Molecules - Interrelations Between Bond Lengths, Bond Angles, And Frequencies Of Normal Vibrations In Alkanes. Journal of Chemical Physics, 1982. 77(9): p. 4542-4550.
    80. Weiner, S.J., et al., An All Atom Force-Field For Simulations Of Proteins And Nucleic-Acids. Journal of Computational Chemistry, 1986. 7(2): p. 230-252.
    81. Halgren, T.A., Maximally Diagonal Force-Constants In Dependent Angle-Bending Coordinates .2. Implications For The Design Of Empirical Force-Fields. Journal of the American Chemical Society, 1990. 112(12): p. 4710-4723.
    82. Wei, C. and D. Srivastava, Nanomechanics of carbon nanofibers: Structural and elastic properties. Applied Physics Letters, 2004. 85(12): p. 2208.
    83. Frenkel, D., Understanding Molecular Simulation, Second Edition: From Algorithms to Applications. Second Edition ed. 2001: Academic Press.
    84. Benas, P., et al., The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. Rna-a Publication of the Rna Society, 2000. 6(10): p. 1347-1355.
    85. Lindahl, E., B. Hess, and D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 2001. 7(8): p. 306-317.
    86. Jorgensen, W.L., et al., Comparison of simple potential functions for simulating liquid water. Journal of chemical physics, 1983. 79(2): p. 926-935.
    87. Novina, C.D., et al., siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 2002.

    無法下載圖示 校內:2016-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE