簡易檢索 / 詳目顯示

研究生: 詹謙和
Ho, Samuel Chieng Kien
論文名稱: 自走車的軌跡追踪與最佳化避障
Autonomous Trajectory Tracking and Obstacle Avoidance via Pure Pursuit and Optimization
指導教授: 譚俊豪
Tarn, Jiun-Haur
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 84
外文關鍵詞: Pure Pursuit, Obstacle Avoidance, Trajectory Tracking, Optimization
相關次數: 點閱:76下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於任何一種自走車而言,自動避開障礙物的功能是一項重要指標。這項指標應當被設計加入到車子的導航控制系統中,可從對環境的感知,路徑規劃以及車子的控制這幾方面下手進行整合。有時候就算已經知道了障礙物的位置,但是如何在高速下進行避障仍然十分挑戰性,尤其是在即時地進行這些避障的規劃和車子的控制上。
    這篇論文當中,有設定了兩個小目標,第一個是盡可能快速地跑完所給定的路徑。第二個則是自動避障,無論是否已經事先知曉障礙物的位置,自走車都必須被要求有能力自發地避開障礙物。
    對於第一個小目標,設計了一個自動可調式的速度以及前瞻距離的單純追蹤控制器來達成用越短的時間完成路徑。至於第二個小目標,設計了使用單純追蹤控制器來追蹤所計算出的避障路徑。
    最後,將兩者整合起來,這樣就不但可以快速跑完路徑,同時也可以進行避障的動作。雙重模式是一個可以用來實現目標的非常好的選擇,這雙重模式就是巡航模式以及避障模式。

    For any autonomous vehicle, the capability of obstacle avoiding is an important feature to be incorporated into vehicle navigation systems through the integration of appropriate sensing, trajectory planning and control system. Even when obstacles’ locations are known, high-speed obstacle avoidance presents challenges in real-time motion planning and control.
    In this thesis, there are two sub-goals, one is finishing the given track as soon as possible. While another one is obstacle avoidance, regardless foreknow the location of obstacles, the car is demanded to avoid the obstacles ahead automatically.
    For the first sub-goal, Variable Speed and Lookahead Pure Pursuit Tracking Controller is developed to accomplish a shorter runtime with a given track. For the second sub-goal, obstacle avoidance path is designed to be tracked with pure pursuit tracking controller.
    Finally, an integration of two tasks on achieving both the trajectory tracking and obstacle avoidance simultaneously has been presented. A dual mode is a good option for realizing the main goal, they are known as cruise mode and avoid mode.

    ABSTRACT………………………………………………………… 1 中文摘要 ……………………………………………………… 2 ACKNOWLEDGEMENT ……………………………………………… 3 TABLE OF CONTENTS …………………………………………… 4 LIST OF TABLES ……………………………………………… 6 LIST OF FIGURES ……………………………………………… 7 Chapter 1: Introduction …………………………………… 9 1-1 Motivation ……………………………… 9 1-2 Contributions of this thesis ……… 11 Chapter 2: State Estimation …………………………… 13 2-1 Hardware ………………………………… 13 2-2 State Estimation ……………………… 14 2-3 Experiment Result …………………… 16 2-4 Conclusion ……………………………… 17 Chapter 3: Car Modeling ………………………………… 18 3-1 Dynamics of the RC Car ……………… 18 3-2 Mechanical Model ……………………… 20 3-3 Slip free Model ……………………… 22 3-4 Simulation Result …………………… 26 3-5 Conclusion ……………………………… 27 Chapter 4: Pure Pursuit Tracking Controller (Fix Speed and Look-ahead distance) ………………………………… 28 4-1 Pure Pursuit Algorithm ……………… 28 4-2 Waypoint Navigation ………………… 30 4-3 Vehicle Control ……………………… 32 4-4 Implementation ………………………… 34 4-5 Experiment Results …………………… 34 4-6 Conclusion ……………………………… 38 Chapter 5: Variable Speed Pure Pursuit and Speed Profile Generating …………………………………………………… 39 5-1 Finding the Slip Speed ……………… 39 5-2 Generating Speed Profile …………… 42 5-3 Acceleration and Deceleration Constraints Check ………………………………………………………… 45 5-4 Decision of Suitable Lookahead Distance ………………………………………………………………… 47 5-5 Implementation ………………………… 48 5-6 Experiment Results …………………… 49 5-7 Conclusion ……………………………… 51 Chapter 6: Path Planning for Obstacle Avoidance … 52 6-1 Dijkstra’s Algorithm ……………… 52 6-2 Implementing Costs into Map for Path Planning ……………………………………………………… 56 6-3 Obstacle Avoidance Path Planner … 61 6-4 Conclusion ……………………………… 62 Chapter 7: Obstacle Avoidance via Pure Pursuit …… 63 7-1 Obstacle Avoidance via original Navigation Stack Tracking Controller ………………… 63 7-2 Obstacle Avoidance via Pure Pursuit Tracking Controller ……………………………………… 70 7-3 Mode Switching Controller ………… 74 Chapter 8: Conclusion …………………………………… 81 8-1 Summary ………………………………… 81 8-2 Outlook ………………………………… 81 REFERENCES …………………………………………………… 83

    [1] Massachusetts Institute of Technology (MIT) RACECAR Project. [Online]. Available: https://mit-racecar.github.io/

    [2] RACECAR Project Source Code. [Online]. Available: https://github.com/mit-racecar

    [3] Corey Walsh, “YouTube: High speed robot localization”, 14th Mar 2017. [Online]. Available: https://www.youtube.com/watch?v=xwZSqfRsXY8

    [4] Corey Walsh, “YouTube: Real-Time Particle Filter Robot Localization on the GPU”, 12th Mar 2017. [Online]. Available: https://www.youtube.com/watch?v=-c_0hSjgLYw&t=51s

    [5] Carnegie Mellon University (CMU) LOCOCAR Project. [Online]. Available:http://mrsdprojects.ri.cmu.edu/2016teamd

    [6] LOCOCAR Project Source Code. [Online]. Available: https://github.com/mrsd16teamd/loco_car

    [7] Dijkstra’s Shortest Path Algorithm. [Online]. Available: https://brilliant.org/wiki/dijkstras-short-path-finder/

    [8] Steven C. Peters, “Optimal Planning and Control for Hazard Avoidance of Front-Wheel Steered Ground Vehicles”, Phd Thesis, Massachusetts Institute of Technology, 2012.

    [9] P. Spengler, C. Gammeter, S. Summers and C. Jones, “Modeling of 1:43 scale race cars”, Semester Thesis, Automatic Control Laboratory, ETH Zurich, 2010.

    [10] C. Stutz, M. Mühlebach and M. Schmitt, “Drift Modeling via System Identification”, Semester Thesis, Automatic Control Laboratory, ETH Zurich, 2011.

    [11] Alexander Liniger, “Autonomous Drift Control”, Automatic Control Laboratory, Master Thesis, ETH Zurich, 2012.

    [12] R. Craig Coulter, “Implementation of the Pure Pursuit Path Tracking Algorithm”, Tech Report, Carnegie Mellon University, 1992.

    [13] J. Giesbrecht, D. Mackay, J.Collier and S.Verret, “Path Tracking for Unmanned Ground Vehicle Navigation”, Technical Memorandum, DRDC Suffield, 2005

    [14] T. Moore and D. Stouch, “A Generalized Extended Kalman Filter Implementation for the Robot Operating System”, 13th International Conference on Intelligent Autonomous Systems (IAS-13), 2014.

    [15] D. Lu, D. Hershberger and W. Smart, “Layered Costmaps for Context-Sensitive Navigation”, IEEE International Conference on Intelligent Robots and Systems (IROS), 2014.

    [16] H. Andersen, Z. Jie Chong, Y. Hong Eng, S. Pendleton and M. Ang Jr, “Geometric Path Tracking Algorithm for Autonomous Driving in Pedestrian Environment”, IEEE International Conference on Advanced Intelligent Mechatroniccs (AIM), 2016.

    [17] L. Rui and D. Jianmin, “A Path Tracking Algorithm of Intelligent Vehicle by Previes Strategy”, 32nd Chinese Control Conference, 2013.

    [18] P. Myung-Wook, L. Sang-Woo and H. Woo-Yong, “ Development of Lateral Control System for Autonomous Vehicle Based on Adaptive Pure Pursuit Algorithm”, 14th International Conference on Control, Automation and Systems (ICCAS), 2014.

    [19] S. Quainlan and O. Khatib, “Elastic Bands: Connecting Path Planning and Control”, IEEE International Conference on Robotics and Automation, 1993.

    [20] ROS.org, “teb_local_planner”, [Online]. Available: http://wiki.ros.org/teb_local_planner

    [21] C. Rösmann, W. Feiten and T. Wösch, “Trajectory modification considering dynamic constraints of autonomous robots”, 7th German Conference on Robotics, Proceedings of ROBOTIK, 2012.

    [22] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann and T. Bertram, “Efficient Trajectory Optimization using a Sparse Model”, IEEE European Conference on Mobile Robots (ECMR), 2013.

    [23] C. Rösmann, F. Hoffmann and T. Bertram, “Planning of Multiple Robot Trajectories in Distinctive Topologies”, IEEE European Conference on Mobile Robots (ECMR), 2015.

    [24] C. Rösmann, F. Hoffmann and T. Bertram, “Timed-Elastic-Bands for Time-Optimal Point-to-Point Nonlinear Model Predictive Control”, European Control Conference. 2015.

    [25] N. Limpert, S. Schiffer and A. Ferrein, “A Local Planner for Ackermann-Driven Vehicles in ROS SBPL”, International Conference on Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), 2015.

    [26] G. Zhenhai, W. Jun, H. Hongyu, Y. Wei, W. Dazhi and W. Lin, “Multi-argument Control Mode Switching Strategy for Adaptive Cruise Control System”, Jilin University, 2016.

    [27] Samuel Chieng Kien Ho, “YouTube: Obstacle Avoidance and Trajectory Tracking via Pure Pursuit [Dual Mode]”, 2nd Nov 2017. [Online]. Available: https://www.youtube.com/watch?v=CwqISA19EfM

    下載圖示 校內:立即公開
    校外:2018-11-07公開
    QR CODE