| 研究生: |
張皓鈞 Chang, Hao-Chun |
|---|---|
| 論文名稱: |
表面修飾二氧化鈦奈米柱陣列光觸媒增益二氧化碳光轉換效能之研究 Surface Modifications of TiO2 Nanorod Array Photocatalysts for CO2 Photoconversion |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 二氧化鈦 、一維奈米結構 、光沉積法 、共觸媒 、光還原二氧化碳 、連續式系統 |
| 外文關鍵詞: | titanium oxide, 1-D nanostructure, photodeposition cocatalyst, CO2 photoreduction, continuous system |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用水熱法成長單晶金紅石二氧化鈦奈米柱陣列,並以溶劑熱法成長銳鈦礦奈米粒子於奈米柱表面上,形成金紅石-銳鈦礦複合結構光觸媒。進一步以光沉積法成長鉑與銅奈米粒子於此二氧化鈦複合光觸媒,探討不同共觸媒對光還原二氧化碳之效能影響。由放射光譜分析得知此金紅石-銳鈦礦複合結構光觸媒具有大量表面缺陷,再結合現象嚴重。但此複合結構光觸媒之CH4 產率較金紅石二氧化鈦奈米柱陣列高出1.5 倍。推測其形成之Z-scheme 結構能有效促進光觸媒之效能。沉積鉑奈米粒子於複合結構光觸媒可進一步增加電子電洞對的分離效率。鉑奈米粒子修飾之複合結構光觸媒於光還原二氧化碳實驗中,最高之H2、CO 及CH4 產率分別為4964、1489 及1226 nmol/g/h。與未修飾之復合結構光觸媒相比,各產物產率皆有明顯提升,其中以H2 產率及選擇率增加幅度最大。沉積銅奈米粒子於鉑奈米粒子修飾之複合光觸媒表面時,可進一步增加電子電洞分離效率,且能明顯提升光還原二氧化碳實驗之CH4 與CO 選擇率。光沉積照光時間30 分鐘,前驅物濃度為10-5M 為參數所沉積之銅奈米粒子於複合光觸媒,其最高之CH4 選擇率為78.3 %,但會降低整體光觸媒效能。
A heterojunction nanorod array composed of anatase nanoparticles (ANP) on the surface of the rutile NR (RNR) array were synthesized and further decorated by Pt and Cu nanoparticles (NP). The hybrid photocatalyst was employed to CO2 photoreduction experiment under continuous flow system with GC online detection of H2, CO and CH4. The characterization shows that ANP were deposited on the RNR surface with thickness ~2 nm. Photodeposition Pt onto ANP/RNR resulted in well-deposited Pt NP (3-5 nm). In the CO2 photoreduction experiments, RNR shows mainly CO production while low yield of CH4. After deposited ANP onto RNR, the yield of all gases increase without changing the selectivity. Decorating Pt NPs on the ANP/RNR shows maximum H2, CO and CH4 yield 4964, 1489 and 1226 nmol/g/h, respectively. Further decorating Cu NPs on the Pt/ANP/RNR indicates maximum CH4 selectivity 78.3 %.
1. Wenguang, T., Z. Yong, and Z. Zhigang, Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects. Advanced Materials, 2014. 26(27): p. 4607-4626.
2. Laursen, S. and S. Poudyal, Chapter 8 - Photo- and Electro-Catalysis: CO2 Mitigation Technologies, in Novel Materials for Carbon Dioxide Mitigation Technology, F. Shi and B. Morreale, Editors. 2015, Elsevier: Amsterdam. p. 233-268.
3. White, J.L., et al., Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 2015. 115(23): p. 12888-12935.
4. Ma, Y., et al., Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014. 114(19): p. 9987-10043.
5. Jiang, Z., et al., Turning carbon dioxide into fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1923): p. 3343.
6. Li, X., et al., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014. 57(1): p. 70-100.
7. Ola, O. and M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015. 24: p. 16-42.
8. Indrakanti, V.P., J.D. Kubicki, and H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2009. 2(7): p. 745-758.
9. Yang, M.-Q. and Y.-J. Xu, Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective. Nanoscale Horizons, 2016. 1(3): p. 185-200.
10. Ji, Y. and Y. Luo, New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. Journal of the American Chemical Society, 2016. 138(49): p. 15896-15902.
11. Ji, Y. and Y. Luo, Theoretical Study on the Mechanism of Photoreduction of CO2 to CH4 on the Anatase TiO2(101) Surface. ACS Catalysis, 2016. 6(3): p. 2018-2025.
12. Kortlever, R., et al., Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. The Journal of Physical Chemistry Letters, 2015. 6(20): p. 4073-4082.
13. Xiang, X., F. Pan, and Y. Li, A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Advanced Composites and Hybrid Materials, 2018. 1(1): p. 6-31.
14. Tsai, C.-W., et al., Ni@NiO Core–Shell Structure-Modified Nitrogen-Doped InTaO4 for Solar-Driven Highly Efficient CO2 Reduction to Methanol. The Journal of Physical Chemistry C, 2011. 115(20): p. 10180-10186.
15. Wang, Z.-Y., et al., CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Applied Catalysis A: General, 2010. 380(1): p. 172-177.
16. Wang, Y., et al., Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes. APL Materials, 2015. 3(11): p. 116106.
17. Guangcheng, X., O. Shuxin, and Y. Jinhua, General Synthesis of Hybrid TiO2 Mesoporous “French Fries” Toward Improved Photocatalytic Conversion of CO2 into Hydrocarbon Fuel: A Case of TiO2/ZnO. Chemistry – A European Journal, 2011. 17(33): p. 9057-9061.
18. Qiu, X., et al., Hybrid CuxO/TiO2 Nanocomposites As Risk-Reduction Materials in Indoor Environments. ACS Nano, 2012. 6(2): p. 1609-1618.
19. Tahir, M., et al., Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Applied Surface Science, 2016. 389: p. 46-55.
20. Paulino, P.N., V.M.M. Salim, and N.S. Resende, Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Applied Catalysis B: Environmental, 2016. 185: p. 362-370.
21. Jinqing, J., et al., Platinum Nanoparticles Supported on TiO2 Photonic Crystals as Highly Active Photocatalyst for the Reduction of CO2 in the Presence of Water. Energy Technology, 2017. 5(6): p. 877-883.
22. Feng, X., et al., Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide. Journal of Materials Chemistry, 2011. 21(35): p. 13429-13433.
23. Xie, S., et al., MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis, 2014. 4(10): p. 3644-3653.
24. Pipelzadeh, E., et al., Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing. Applied Catalysis B: Environmental, 2017. 218: p. 672-678.
25. Indrakanti, V.P., H.H. Schobert, and J.D. Kubicki, Quantum Mechanical Modeling of CO2 Interactions with Irradiated Stoichiometric and Oxygen-Deficient Anatase TiO2 Surfaces: Implications for the Photocatalytic Reduction of CO2. Energy & Fuels, 2009. 23(10): p. 5247-5256.
26. Liu, L., et al., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2012. 2(8): p. 1817-1828.
27. Kondratenko, E.V., et al., Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 2013. 6(11): p. 3112-3135.
28. Martin, D., S. Robert, and S. Jennifer, Photocatalytic CO2 Reduction Under Continuous Flow High-Purity Conditions: Quantitative Evaluation of CH4 Formation in the Steady-State. ChemCatChem, 2017. 9(4): p. 696-704.
29. Duan, Z. and R. Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 2003. 193(3): p. 257-271.
30. Wang, W.-N., et al., Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. Journal of the American Chemical Society, 2012. 134(27): p. 11276-11281.
31. Morris, A.J., G.J. Meyer, and E. Fujita, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research, 2009. 42(12): p. 1983-1994.
32. Miyamoto, K., Food, and A.O.o.t.U. Nations, Renewable Biological Systems for Alternative Sustainable Energy Production. 1997: Food and Agriculture Organization of the United Nations.
33. Dambournet, D., I. Belharouak, and K. Amine, Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties. Chemistry of Materials, 2010. 22(3): p. 1173-1179.
34. Li, K., et al., A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today, 2014. 224: p. 3-12.
35. Yan, Y., et al., Adjustment and Matching of Energy Band of TiO2-Based Photocatalysts by Metal Ions (Pd, Cu, Mn) for Photoreduction of CO2 into CH4. The Journal of Physical Chemistry C, 2017. 121(2): p. 1089-1098.
36. Singhal, N. and U. Kumar, Noble metal modified TiO2: selective photoreduction of CO2 to hydrocarbons. Molecular Catalysis, 2017. 439: p. 91-99.
37. Luttrell, T., et al., Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Scientific Reports, 2014. 4: p. 4043.
38. Ohtani, B., et al., What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 2010. 216(2): p. 179-182.
39. Scanlon, D.O., et al., Band alignment of rutile and anatase TiO2. Nature Materials, 2013. 12: p. 798.
40. Yang, J.-S., W.-P. Liao, and J.-J. Wu, Morphology and Interfacial Energetics Controls for Hierarchical Anatase/Rutile TiO2 Nanostructured Array for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2013. 5(15): p. 7425-7431.
41. Kong, D., et al., Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Applied Surface Science, 2013. 277: p. 105-110.
42. Yu, K.-P., et al., Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Applied Catalysis B: Environmental, 2008. 84(1): p. 112-118.
43. Slamet, et al., Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications, 2005. 6(5): p. 313-319.
44. Adachi, K., K. Ohta, and T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 1994. 53(2): p. 187-190.
45. Hori, Y., K. Kikuchi, and S. Suzuki, PRODUCTION OF CO AND CH4 IN ELECTROCHEMICAL REDUCTION OF CO2 AT METAL ELECTRODES IN AQUEOUS HYDROGENCARBONATE SOLUTION. Chemistry Letters, 1985. 14(11): p. 1695-1698.
46. Kuhl, K.P., et al., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science, 2012. 5(5): p. 7050-7059.
47. Liu, L., et al., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental, 2013. 134-135: p. 349-358.
48. Jingpeng, J., et al., One‐Pot Synthesis of Cu‐Nanocluster‐Decorated Brookite TiO2 Quasi‐Nanocubes for Enhanced Activity and Selectivity of CO2 Photoreduction to CH4. ChemPhysChem, 2017. 18(22): p. 3230-3239.
49. Qingge, Z., et al., Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co‐catalysts with a Core–Shell Structure. Angewandte Chemie International Edition, 2013. 52(22): p. 5776-5779.
50. Ola, O., et al., Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation. Applied Catalysis B: Environmental, 2012. 126: p. 172-179.
51. Kohno, Y., et al., Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1999. 126(1): p. 117-123.
52. Pang, R., et al., Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. Applied Catalysis B: Environmental, 2017. 218: p. 770-778.
53. Wang, Y., et al., Selective photocatalytic carbon dioxide conversion with Pt@Ag-TiO2 nanoparticles. Catalysis Communications, 2018. 108: p. 98-102.
54. Zhang, X., et al., Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017. 8: p. 14542.
55. Li, X., et al., Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General, 2012. 429-430: p. 31-38.
56. Yui, T., et al., Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2. ACS Applied Materials & Interfaces, 2011. 3(7): p. 2594-2600.
57. Zhao, C., et al., Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor. Catalysis Science & Technology, 2015. 5(6): p. 3288-3295.
58. Liu, L. and Y. Li, Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review. Aerosol and Air Quality Research, 2014. 14(2): p. 453-469.
59. Pan, H., B. Gu, and Z. Zhang, Phase-Dependent Photocatalytic Ability of TiO2: A First-Principles Study. Journal of Chemical Theory and Computation, 2009. 5(11): p. 3074-3078.
60. He, Z., et al., Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Applied Surface Science, 2016. 364: p. 416-427.
61. Kraeutler, B. and A.J. Bard, Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. Journal of the American Chemical Society, 1978. 100(13): p. 4317-4318.
62. Wenderich, K. and G. Mul, Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 2016. 116(23): p. 14587-14619.
63. Williams, D.B. and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science. 2009: Springer.
64. Yan-Gu, L., et al., Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation Catalyst. Angewandte Chemie International Edition, 2009. 48(41): p. 7586-7590.
65. Jingpeng, J., et al., One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO2 Quasi-Nanocubes for Enhanced Activity and Selectivity of CO2 Photoreduction to CH4. ChemPhysChem, 2017. 18(22): p. 3230-3239.
66. Xiong, Z., et al., Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 2017. 202: p. 695-703.
67. Tan, J.Z.Y., et al., Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chemical Physics Letters, 2012. 531: p. 149-154.
68. Chen, L., et al., Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films, 2009. 517(19): p. 5641-5645.
69. Nakamatsu, H., et al., Electron-microscopic observation of photodeposited Pt on TiO2 particles in relation to photocatalytic activity. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986. 82(2): p. 527-531.
70. Lee, J. and W. Choi, Photocatalytic Reactivity of Surface Platinized TiO2: Substrate Specificity and the Effect of Pt Oxidation State. The Journal of Physical Chemistry B, 2005. 109(15): p. 7399-7406.
71. Herrmann, J.M., J. Disdier, and P. Pichat, Photoassisted platinum deposition on TiO2 powder using various platinum complexes. The Journal of Physical Chemistry, 1986. 90(22): p. 6028-6034.
72. Zhang, F., et al., Synthesis of Titania-Supported Platinum Catalyst: The Effect of pH on Morphology Control and Valence State during Photodeposition. Langmuir, 2004. 20(21): p. 9329-9334.
73. Chanjuan, X., et al., Effects of H+, Cl− and CH3COOH on the photocatalytic conversion of PtCl62− in aqueous TiO2 dispersion. Journal of Photochemistry and Photobiology A: Chemistry, 1995. 87(3): p. 249-255.
74. Yang, J.-S. and J.-J. Wu, Toward Eco-Friendly and Highly Efficient Solar Water Splitting Using In2S3/Anatase/Rutile TiO2 Dual-Staggered-Heterojunction Nanodendrite Array Photoanode. ACS Applied Materials & Interfaces, 2018. 10(4): p. 3714-3722.
75. Ma, H.L., et al., Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Applied Surface Science, 2007. 253(18): p. 7497-7500.
76. Lin, S.-H., et al., Nanophotonic perovskite solar cell architecture with a three-dimensional TiO2 nanodendrite scaffold for light trapping and electron collection. Journal of Materials Chemistry A, 2016. 4(3): p. 1119-1125.
77. Choudhury, B. and A. Choudhury, Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 2014. 56: p. 364-371.
78. Jin, C., et al., Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale Research Letters, 2015. 10(1): p. 95.
79. Wang, Y., et al., High efficiency photocatalytic conversion of CO2 with H2O over Pt/TiO2 nanoparticles. RSC Advances, 2014. 4(84): p. 44442-44451.
80. Yu, J., L. Qi, and M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. The Journal of Physical Chemistry C, 2010. 114(30): p. 13118-13125.
81. Cueto, M., et al., Platinum Nanoparticles as Photoactive Substrates for Mass Spectrometry and Spectroscopy Sensors. The Journal of Physical Chemistry C, 2014. 118(21): p. 11432-11439.
82. Chan, G.H., et al., Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Letters, 2007. 7(7): p. 1947-1952.
83. Xing, J., et al., The size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst. International Journal of Hydrogen Energy, 2014. 39(3): p. 1237-1242.
校內:2024-05-31公開