| 研究生: |
高聖傑 Kao, Sheng-Chieh |
|---|---|
| 論文名稱: |
詞性組合輔助之中文網路口碑評價分析技術研發 Development of a Technology for Part of Speech Combination Supported Chinese eWOM Analysis |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
陳育仁
Chen, Yuh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 顧客關係管理 、網路口碑 、語意分析 、詞性組合 |
| 外文關鍵詞: | Customer Relationship Management (CRM), Electronic Word-of-Mouth (eWOM), Semantic Analysis, Part-of-Speech (POS) Combination |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,網路口碑(Electronic Word-of-Mouth)已成為產品評價散播的管道以及企業內部改善的重要依據。然而,隨著網際網路普及,各種討論社群因應而生,卻也面臨口碑資訊量爆發性成長所造成資訊過載(Information Overload)的窘境。因此,如何協助企業有效地從大量口碑資訊中分析出有價值的決策依據,實為現今企業實施顧客關係管理重要的研究課題之一。
本研究目的在於研發一詞性組合輔助之中文網路口碑評價分析技術,以有效地協助企業快速且正確的暸解目前網路口碑評價的情況,進而作為企業與顧客關係改善的依據。針對上述目的,本研究主要研究項目包括: (i) 研究領域與相關技術探討,(ii) 詞性組合規則產生與主題字萃取方法設計,(iii) 口碑評價辨識方法設計以及(iv) 詞性組合輔助之中文網路口碑評價分析機制實作。
The main purpose of this study is to develop a technology for a Part-of-Speech (POS) combination-aided Chinese electronic Word-of-Mouth (eWOM) analysis. Using this technology to analyze a Chinese eWOM, we obtain eWOM sentences of the target product, and analyze eWOM polarities supplemented by POS combination rules, and constantly update analysis criteria to keep up with new network articles. Hope this technology can effectively help companies quickly and correctly understand the evaluation situation of the current eWOM, and further form a company basis for improving their relations with customers. This study mainly include: (1) Exploration of Research Domains and Related Technologies, (2) POS Combination Rules Generation and Topic Terms Extraction Method Design, (3) eWOM Identification Method Design, and (4) Implementation of POS Combination-Aided Chinese eWOM Analysis Mechanisms.
[1] Chang, S.-C., Developing a Chance Discovery Method with Consideration of Sequential Relationship, in 製造資訊與系統研究所碩博士班2012, 成功大學. p. 1-70.
[2] Fang, W., F.S. Roberts, and Z. Ma, A measure of discrepancy of multiple sequences. Information Sciences, 2001. 137(1–4): p. 75-102.
[3] Feng, S., et al., A novel approach for clustering sentiments in Chinese blogs based on graph similarity. Computers & Mathematics with Applications, 2011. 62(7): p. 2770-2778.
[4] Hanson, W., Principles of internet marketing. 2000, [Cincinnati, Ohio] : Cincinnati, Ohio: South-Western college publishing(IS), South-Western publishing.
[5] Harrison-Walker and L. Jean, The Measurement of Word-of-Mouth Communication and an Investigation of Service Quality and Customer Commitment as Potential Antecedents. Journal of Service Research, Vol.4, No.1, pp.60-75., 2001.
[6] He, Y. and D. Zhou, Self-training from labeled features for sentiment analysis. Information Processing & Management, 2011. 47(4): p. 606-616.
[7] Hennig-Thurau, K.P.G. T., and D. D.Gremler, Understanding Relationship Marketing Outcomes-An Integration of Relational Benefits and Relationship Quality. Journal of Service Research 4(3), Feb, pp. 230-247., 2002.
[8] Li, C.-R., C.-H. Yu, and H.-H. Chen, Predicting the Semantic Orientation of Terms in E-HowNet. International Journal of Computational Linguistics And Chinese Language Processing 2011.
[9] Liang, T.-Y., The Impact of Service Recovery and Negative WOM on Consumers' Purchase Intentions and Behavior, in 資訊管理研究所2012, 國立交通大學: 新竹市. p. 66.
[10] Liu, Y.-C., Development of a Mechanism of Potential Customer Searching from Virtual Communities: Food Industry as an application. 碩士論文, 2012.
[11] Lo, S., Web service quality control based on text mining using support vector machine. Expert Syst. Appl., 2008. 34(1): p. 603-610.
[12] Na, J.-C., C. Khoo, and P.H.J. Wu, Use of negation phrases in automatic sentiment classification of product reviews. Library Collections, Acquisitions, and Technical Services, 2005. 29(2): p. 180-191.
[13] Pai, M.Y., et al., Electronic Word of Mouth Analysis for Service Experience. Expert Systems with Applications. 40(6), 1993-2006, (SCI) IF:2.203. (NSC 100-2221-E-006-208-MY3). ISSN 0957-4174, 2012.
[14] Quan, C. and F. Ren, A blog emotion corpus for emotional expression analysis in Chinese. Computer Speech & Language, 2010. 24(4): p. 726-749.
[15] Richins, M., Negative Word-of-Mouth byDissatisfied Consumers: A Pilot Study. Journal of Marketing Vol. 47, Iss. 1 Dec (1983): 68., 1983.
[16] Scherer, I.K. and P.E. (Eds.), Expression and the nature of emotion. Approaches to emotion (pp. 319±344). Hillsdale NJ: Erlbaum., 1984.
[17] Singh, J., Voice, exit, and negative word-of-mouth behaviors: An investigation across three service categories. Journal of the Academy of Marketing Science, 1990. 18(1): p. 1-15.
[18] Singh, T., L. Veron-Jackson, and J. Cullinane, Blogging: A new play in your marketing game plan. Business Horizons, 2008. 51(4): p. 281-292.
[19] Sproat, R. and C. Shih, A statistical method for finding word boundaries in Chinese text. Computer Processing of Chinese and Oriental Languages, 1990. 4(4): p. 336-351.
[20] Tan, S. and J. Zhang, An empirical study of sentiment analysis for chinese documents. Expert Syst. Appl., 2008. 34(4): p. 2622-2629.
[21] Tang, H., S. Tan, and X. Cheng, A survey on sentiment detection of reviews. Expert Systems with Applications, 2009. 36(7): p. 10760-10773.
[22] Turney, P.D., Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews, in Proceedings of the 40th Annual Meeting on Association for Computational Linguistics2002, Association for Computational Linguistics: Philadelphia, Pennsylvania. p. 417-424.
[23] Westbrook, R.A., Product/Consumption-Based Affective Responses and Postpurchase Processes. Journal of Marketing Research, Vol. 24, pp. 258-270., 1987.
[24] Yan-Tzuo, L., Using Online Word-of-Mouth to Predict Taipei Box Office Revenue, in 資訊管理學系2012, 元智大學: 桃園縣. p. 60.
[25] Zhai, Z., et al., Exploiting effective features for chinese sentiment classification. Expert Systems with Applications, 2011. 38(8): p. 9139-9146.
[26] Zhang, M., et al., Software note: MSAID: multiple sequence alignment based on a measure of information discrepancy. Comput. Biol. Chem., 2005. 29(2): p. 175-181.
[27] 李幸, 宗成庆, 引入标点处理的层次化汉语长句句法分析方法. 中文信息學報, 2006. 20(4): p. 8-15.
[28] 李家同, 與DNA有關的演算法問題. 數學傳播,卷期:24:4=96 民89.12,頁次:頁28-34。, 2000.
[29] 林晧凱, 以詞彙相關性修正 SentiWordNet 中立情感數值改善文章分類之成效, in 資訊管理研究所2011, 中原大學: 桃園縣. p. 60.
[30] 俞士汶, et al., 漢語詞彙語義研究及詞彙知識庫建設. LANGUAGE AND LINGUISTICS9.2:359-379, 2008.
[31] 洪儷瑜, 陳佩盈, 中文句型類型整理. http://www.rm.spc.ntnu.edu.tw:8080/upload/prog/%E4%B8%AD%E6%96%87%E5%8F%A5%E5%9E%8B%E9%A1%9E%E5%9E%8B%E6%95%B4%E7%90%86.pdf, 2005.
[32] 張育蓉, 使用情緒分析於圖書館使用者滿意度評估之研究, in 圖書資訊學研究所2012, 中興大學: 台中市. p. 121.
[33] 游和正, 領域相關詞彙極性分析及文件情緒分類之研究, in 資訊工程學研究所2012, 臺灣大學: 台北市. p. 57.
[34] 楊如雪, 『國文文法97(上)』『國文文法97(下)』『語言學概論』. 國立臺灣師範大學開放式課程, 1998.
[35] 许鑫, 俞飞, and 张莉, 一种文本倾向性分析方法及其应用. 现代图书情报技术, 2011. 27(10): p. 54-62.
校內:2016-08-19公開