| 研究生: |
高忠義 Kao, Chung-I |
|---|---|
| 論文名稱: |
砷化銦鎵/砷化銦鋁/砷化鎵變晶性高電子移動率電晶體之研製 Fabrication of InGaAs/InAlAs/GaAs Metamorphic High Electron Mobility Transistor (MHEMT) |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 扭結效應 、變晶性 、高電子移動率電晶體 |
| 外文關鍵詞: | kink effect, high electron mobility transistor, metamorphic |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用分子束磊晶法成長及研製兩種磷化銦材料系列之異質結構場效電晶體,為穫得良好之高溫操作特性,我們在製作閘極電極時依序蒸鍍上白金及金兩種金屬,白金用以防止金在高溫操作時擴散至蕭特基層而破壞其蕭特基特性,而金則用以減少閘極之串聯電阻效應;同時,為使閘極掘入更為精確及穩定,我們使用具有高選擇性之琥珀酸調和溶液以提昇元件良率。為更進一步穫得較大之功率增益及頻寬,我們使用深紫外線光罩微影系統來製作次微米閘極之場效電晶體;實驗數據顯示,所研製之元件具有良好之直流、微波及高溫操作特性,因此適合應用於高速和高功率電路中。
首先,我們探討具有單平面摻雜層之砷化銦鎵/砷化銦鋁/砷化鎵變晶性高電子移動率場效電晶體,我們利用高銦含量之砷化銦鎵材料為傳導層,以穫得良好的傳輸特性;此外,單平面摻雜層之設計,不僅可以降低雜質散射之影響,亦可使通道具備較佳之載子侷限力。
其次,我們探討具有更高銦含量通道層之雙平面摻雜層砷化銦鎵/砷化銦鋁/砷化鎵變晶性高電子移動率場效電晶體,結構中,雙平面摻雜層之設計不僅提昇了電流密度,亦使得通道層內之載子分佈更為均勻,進而穫得更為寬廣的汲極電流操作區間;此外,較厚的蕭特基層可以用來抑制元件之閘極漏電流的產生。
最後,我們利用以上兩種結構製作具次微米閘極之變晶性高電子移動率場效電晶體,藉由結構參數的改變來比較其輸出電性之差異;此外,由於閘極長度之縮減,元件在直流及微波特性上都有較佳之表現。
In this thesis, two InP-based heterostructure field-effect transistors (HFETs), grown by molecular beam epitaxy (MBE) system, have been fabricated and investigated. We evaporated platinum and gold as Schottky contact metals to obtain high-temperature performance. In addition, the highly selective succinic PH-adjusted solution is used to make recessed gate more precise and stable to increase device yield. For obtaining more power gain and bandwidth of transistors, we also fabricate sub-micron meter gate devices with resorting to deep ultraviolet (UV) photolithography. Experimentally, the devices show good DC, RF, and high-temperature characteristics. These advantages suggest that the studied devices are suitable for high-speed and high-power integrated circuit applications.
First, we study InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor. With high indium content in InGaAs channel layer, we obtain good transport property. Moreover, by employing the single d-doped sheet, it not only decreases the impurity scattering, but also increases the ability of carrier confinement.
Second, we report InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor with higher In mole fraction of InGaAs channel than that in first structure. Based on the use of double d-doped sheets, the current density and uniform distribution of carriers in channel layer are improved. Therefore, the device with wide drain current operation regime is obtained. In addition, due to the use of thicker Schottky layer, the gate leakage current can be decreased.
Finally, the above structures are used to fabricate as sub-micron meter gate MHEMT. We discuss the differences between these two structures. Due to the reduction of gate length, both devices show good DC and microwave performances.
[1] P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. A. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Devices, Vol. 34, pp. 2571 -2579, 1987.
[2] M. E. Kim, A. K. Oki, G.M. Gorman, D. K. Umemoto, and J. B. Camou, “GaAs heterojunction bipolar transistor device-And IC technology for high-performance analog and microwave applications,” IEEE Trans. on Microwave Theory and Techniques, Vol. 37, pp. 1286 -1303, 1989.
[3] W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol. 14, pp. 176-178, 1993.
[4] F. Ren, C. R. Abernathy, S. J. Pearton, J. R. Lothian, P. W. Wisk, T. R. Fullowan, Y. K. Chen, L. W. Yang, S. T. Fu, R. S. Brozovich, and H. H. Lin, “Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application,” IEEE Electron Device Lett. Vol. 14, pp. 332 –334,1993.
[5] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan and M. J. W. Rodwell, “Transfer-substrate HBTs with 254GHz fT,” IEE Electron. Lett., vol. 35, pp.605-606, 1999.
[6] Q. Lee, S. C. Martin, D. Mensa, R. P. Smith, J. Guthrie, and M. J. W. Rodwell, “Submicron transferred-substrate heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 20, pp. 396-398, 1999.
[7] W. Schockley , "Circuit elements utilizing semiconductive material," U. S. Patent, N. 2569, p. 347, 1951.
[8] H. Kroemer, "Heterostructure bipolar transistors and integrated circuits," IEEE Proc. Vol. 70, p.13, 1982.
[9] S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode,” B.J. Appl. Phys. Vol. 16, p.133, 1965.
[10] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron. Vol. 15, p.12, 1972.
[11] S. Honda, T. Miyake, T. Ikegami, K. Yagi, Y. Bessho, R. Hiroyama, M. Shone, and M. Sawada, “Low threshold 650 nm band real refractive index-guided AlGaInP laser diodes with strain-compensated MQW active layer,” IEE Electron. Lett., vol. 36, pp. 1284-1286, 2000.
[12] D. Jang, J. Shim, J. Lee, and Y. Eo, “Asymmetric output characteristics in 1.3 μm spot-size converted laser diodes,” IEEE J. Quantum Electron., vol. 37, pp. 1611-1617, 2001.
[13] W. C. Liu; K. H. Yu; K. W. Lin; J. H. Tsai; C. Z. Wu; K. P. Lin; and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage, and high-temperature operations” IEEE Trans. Electron Device., vol. 48, pp. 1522-1530, 2001.
[14] W. C. Liu; W. L. Chang; W. S. Lour; K. H. Yu; K. W. Lin; C. C. Cheng; and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor” IEEE Trans. Electron Device., vol. 48, pp. 1290-1296, 2001.
[15] W. C. Liu; K. H. Yu; R. C. Liu; K. W. Lin; K. P. Lin; C. H. Yen; C. C. Cheng; and K. B. Thei, “ Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET” IEEE Trans. Electron Device., vol. 48, pp. 2677-2683, 2001.
[16] K. H. Yu; H. M. Chuang; K. W. Lin; S. Y. Cheng; C. C. Cheng; J. Y. Chen; and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
[17] C. Y. Chen; S. Y. Cheng; W. H. Chiou; H. M. Chuang; and W. C. Liu, “A novel InP/InGaAs TEBT for ultralow current operations” IEEE Electron Device Lett., vol. 24, pp. 126-128, 2003.
[18] C. Y. Chen; S. Y. Cheng; W. H. Chiou; H. M. Chuang; R. C. Liu; C. H. Yen; J. Y. Chen; C. C. Cheng; and Wen-Chau Liu, “DC characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT)” IEEE Trans. Electron Device., vol. 50, pp. 874-879, 2003.
[19] H. M. Chuang, S. Y. Cheng; X. D. Liao; C. Y. Chen; and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” IEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
[20] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Device., vol. 50, pp. 1717-1723, 2003.
[21] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Double-Barrier-Emitter Triangular-Barrier Optoelectronic Switch,” IEEE J. Quantum Electron., vol. 40, pp. 413-419, 2004.
[22] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a New BBOS With an AlGaAs-d(n+)-GaAs-InAlGaP Collector Structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
[23] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee, and W. C. Liu, “Comprehensive study of InGaP/AlxGa1-xAs/GaAs heterojunction bipolar transistors with different doping concentrations of AlxGa1-xAs graded layers,” Semicond. Sci. Technol., vol. 19, pp. 351-358, 2004.
[24] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[25] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, W. S. Lour, and W. C. Liu, “Influences of the mesa-sidewall effect on Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Semicond. Sci. Technol., vol. 14, pp. 887-891, 1999.
[26] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, pp. L1385-1387, 1999.
[27] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, K. H. Yu, K. W. Lin, C. C. Cheng, W. S. Lour, and W. C. Liu, “High-performance double delta-doped sheets Ga0.51In0.49P/In0.15Ga0.85As/Ga0.51In0.49P pseudomorphic heterostructure transistors,” Semicond. Sci. Technol., vol. 15, pp. 1-6, 2000.
[28] K. P. Lin, C. H. Yen, W. L. Chang, K. H. Yu, K. W. Lin, and W. C. Liu, “Study of a high-barrier-gate pseudomorphic transistor with a step-compositioned channel and bottomside delta-doped sheet structure,” Semicond. Sci. Technol., vol. 15, pp. 643-647, 2000.
[29] K. W. Lin, K. H. Yu, W. L. Chang, C. C. Cheng, K. P. Lin, C. H. Yen, W. S. Lour, and W. C. Liu, “Characteristics and Comparison of In0.49Ga0.51P/GaAs Single and Double Delta-Doped Pseudomorphic High Electron Mobility Transistors (d-PHEMT’s),” Solid-State Electron., vol. 45, pp. 309-314, 2001.
[30] H.C. Duran, L. Ren, M. Beck, M.A. Py, M. Begems, and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMT's,” Electron Devices, IEEE Transactions on Volume 45, Issue 6, June 1998 Page(s): 1219-1225.
[31] R. Grundbacher, R. Lai, M. Nishimoto, T.P. Chin, Y.C. Chen, M. Barsky, T. Block, D. Streit, “Pseudomorphic InP HEMTs with dry-etched source vias having 190 mW output power and 40% PAE at V-band,” Electron Device Letters, IEEE Volume 20, Issue 10, Page(s): 517 – 519, Oct. 1999.
[32] C. Meliani, G. Post, G. Rondeau, J. Decobert, W. Mouzannar, E. Dutisseuil, R. Lefevre, “DC-92 GHz ultra-broadband high gain InP HEMT amplifier with 410 GHz gain-bandwidth product,” Electronics Letters Volume 38, Issue 20, Page(s): 1175 – 1177, 26 Sept. 2002.
[33] B.-U.H. Klepser, C. Bergamaschi, W. Patrick, M. Beck, “Comparison and optimisation of different ohmic contact metallisations for InP-HEMT structures with doped and undoped cap-layers,” Indium Phosphide and Related Materials, 1994. Conference Proceedings. Page(s): 174 – 177 Sixth International Conference on , 27-31 March 1994.
[34] D.P. Docter, K.R.Elliott, A.E.Schmitz, K. Kiziloglu, J.J. Brown, D.S. Harvey, H.M. Karatnicki, “Low noise InAlAs/InGaAs HEMTs grown by MOVPE,” Indium Phosphide and Related Materials, Page(s): 219 – 222, 1998 International Conference on 11-15 May 1998.
[35] P.M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, IPRM. IEEE International Conference Page(s):9 – 14, 2001.
[36] P. Win, Y. Druelle, A. Cappy, Y. Cordier, D. Adam, and J. Favre, “Metamorphic In0.3Ga0.7As/In0.29Al0.71As layer on GaAs: a new structure for millimeter wave ICs,” IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, Proceedings, 1993.
[37] Y.Cordier, S. Bollaert, M. Zaknoune, J. diPersio, D. Ferre, ”AlInAs/GaInAs metamorphic HEMT's on GaAs substrate: from material to device,” Indium Phosphide and Related Materials, 1998 International Conference on 11-15 May, pp. 211 – 214, 1998.
[38] K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 24-27, 2001.
[39] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative Study on DC Characteristics of In0.49Ga0.51P-Channel Heterostructure Field-Effect Transistors with Different Gate Metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
[40] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao, and W. C. Liu, “Study of InGaP/InGaAs Double Delta-Doped Channel Heterostructure Field-Effect Transistors (DDDCHFETs),” J. Vac. Sci. & Technol. B, vol. 22, pp. 832-837, 2004.
[41] H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs Double Doped Channel Heterostructure Field-effect Transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
[42] R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
[43] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
[44] W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
[45] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/d(p+)-InGaP/n-GaAs heterojunction camel-gate FET,” IEE Electron. Lett., vol. 34, pp. 814-815, 1998.
[46] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/d(p+)-InGaP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
[47] H. Mizuta, K. Yamaguchi, M. Yamane, T. Tanoue, and S. Takahashi, “Two-dimensional numerical simulation of Fermi-level pinning phenomena due to DX centers in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2307-2314, 1989.
[48] R.T. Webster, A.F.M. Anwar, J.L. Heaton, K. Nichols, S. Duncan,” AlGaAsSb/InGaAs/AlGaAsSb metamorphic HEMTs,” IEEE Lester Eastman Conference, High Performance Devices, Proceedings. Page(s): 315-323.
[49] K. Eisenbeiser, R. Droopad, Jenn-Hwa Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMTs on GaAs substrates,” IEEE Electron Device Letters, Volume 20, Page(s): 507 – 509.
[50] C. Karlsson, N. Rorsman, Shumin Wang, M. Persson, “Metamorphic HFETs with composite In0.8Ga0.2As/InAs/In0.8Ga0.2As channels on GaAs substrate,” IEEE International Symposium, Compound Semiconductors, Page(s): 483 – 486.
[51] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Bohm, G. Trankle, G. Weimann, “Metamorphic InAlAs/InGaAs HEMTs on GaAs substrates with a novel composite channels design,” IEEE Electron Device Letters, Volume 17, Issue 6, Page(s): 273 – 275.
[52] D.C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” Electronics Letters, Volume 35, Page(s): 1854 – 1856.
[53] C.S. Whelan, W.F. Hoke, R.A. McTaggart, M. Lardizabal, P.S. Lyman, P.F. Marsh, T.E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE, Electron Device Letters, Volume 21, Issue 1, Page(s):5 – 8.
[54] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, H. Tokuda, “InAlAs/InGaAs metamorphic low-noise HEMT,” IEEE, Microwave and Guided Wave Letters, Volume 7, Issue 1, Page(s): 6 – 8.
[55] D.C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “High performance 0.35 μm gate-length monolithic enhancement/depletion-mode metamorphic In0.52Al0.48As/In0.53Ga0.47 As HEMTs on GaAs substrates,” IEEE, Electron Device Letters, Volume 22, Issue 8, Page(s): 364 – 366.
[56] D.C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” Electron Devices Meeting, IEDM Technical Digest. International. Page(s): 783 – 786, 1999.
[57] K.C. Hwang, P.C. Chao, C. Creamer, K.B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT's,” IEEE, Electron Device Letters, Volume 20, Issue 11, Page(s): 551 – 553.
[58] H. S. Yoon, J. H. Lee, J. Y. Shim, J. Y. Hong, D. M. Kang, W. J. Chang, H. C. Kim, K. I. Cho, “0.15 mm gate length InAlAs/InGaAs power metamorphic HEMT on GaAs substrate with extremely low noise characteristics,” Indium Phosphide and Related Materials, Page(s): 114 – 117.
[59] F. Benkhelifa, M. Chertouk, M. Walther, R. Losch, G. Weimann, “Metamorphic HEMT 0.5 μm low cost high performance process on 4" GaAs substrates,” Indium Phosphide and Related Materials, Conference Proceedings. 2000 International Conference, Page(s): 290 – 293.
[60] P.M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, 2001. IPRM. IEEE International Conference, Page(s): 9 – 14.
[61] D.C. Dumka, H.Q. Tserng, M.Y. Kao, E.A. Beam, P. Saunier, “High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE, Electron Device Letters, Volume 24, Issue 3, Page(s): 135 – 137.
[62] H. Happy, S. Bollaert, H. Foure, A. Cappy, “, Numerical analysis of device performance of metamorphic InyAl1-yAs/InxGa1-xAs (0.3≤x≤0.6) HEMTs on GaAs substrate” IEEE Transactions, Electron Devices, Volume 45, Issue 10, Page(s): 2089 – 2095.
[63] W.C. Hsu, Y.J. Che, C.S. Lee, T.B. Wang, Y.S. Lin, C.L. Wu, “High-temperature thermal stability performance in d-doped In0.425Al 0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE, Electron Device Letters, Volume 26, Issue 2, Page(s): 59 – 61.
[64] K. Yuan, K. Radhakrishnan, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMT using InxGa1-xP graded buffer,” IPRM. Indium Phosphide and Related Materials Conference, Page(s): 161 – 164.
[65] R.T. Webster, A.F.M. Anwar, J.L. Heaton, K. Nichols, S. Duncan, “Impact ionization in AlGaAsSb/InGaAs/GaAsSb metamorphic HEMTs,” Indium Phosphide and Related Materials, Page(s): 233 – 234.
[66] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperature,” IEEE Trans. Electron Devices, vol. 42, pp. 1724-1734, 1995.
[67] Y. J. Chan, and M. T. Yang, “Al0.3Ga0.7As/InxGa1-xAs (0 x 0.25) doped-channel field-effect transistors (DCFET’s),” IEEE Trans. Electron Devices, vol. 42, pp. 1745-1749, 1995.
[68] D.L. Edgar, N.I. Cameron, H. McLelland, M.C. Holland, M.R.S. Taylor, I.G. Thayne, C.R. Stanley, S.P. Beaumont, “Metamorphic GaAs HEMTs with fT of 200 GHz,” IEE Colloquium, Advances in Semiconductor Devices (Ref. No. 1999/025), Page(s): 7/1 - 7/5.
[69] M. Boudrissa, E. Delos, C. Gaquiere, M. Rousseau, Y. Cordier, D. Theron, J.C. Jaeger, “Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT, modeling and measurements,” IEEE Transactions, Electron Devices, Volume 48, Issue 6, Page(s): 1037 – 1044.
[70] H. Willemsen and D. Nicholson, “GaAs Ics in commercial OC-192 equipment”, IEEE GaAs IC Symp. Tech. Dig., pp. 10-13, 1996.
[71] L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu, and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped-channel field-effect transistor (SCDCFET),” IEE Electron. Lett., vol. 33, pp. 98-99, 1997.
[72] K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs camel-like field-effect transistor for high-breakdown and high-temperature applications,” IEE Electron. Lett., vol. 36, no. 22, pp. 1886-1888, 2000.
[73] E. F. Schubert, J. E. Cunningham, and W. T. Tsang, “Electron-mobility enhancement and electron-concentration enhancement in d-doped n-GaAs at T=300 K,” Solid State Commun., vol. 63, pp. 591-594, 1987.
[74] G. Gillman, B. Vinter, E. Barbier, and T. Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, pp. 972-974, 1988.
[75] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double d-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol. 41, pp. 456-457, 1994.
[76] H. Q. Zheng, G. I. Ng, Y. Q. Zhang, K. Radhakrishnan, K. Y. Lee, P. Y. Chee, M. S. Tse, J. X. Weng, and S. F. Yoon, “High linearity, current drivability and fmax using pseudomorphic GaAs double-heterojunction HEMT (DHHEMT),” Proc. IEEE International Conference on Semiconductor Electronics, 1996, pp. 12-14.
[77] T. Suemitsu, T. Enoki, M. Tomizawa, N. Shigekawa, Y. Ishii, “Mechanism and structural dependence of kink phenomena in InAlAs/InGaAs HEMTs,” International Conference, Indium Phosphide and Related Materials, Page(s): 365 – 368.
[78] T. Suemitsu, M. Tomizawa, T. Enoki, Y. Ishii, “Enhancement of weak impact ionization in InAlAs/InGaAs HEMTs induced by surface traps: simulation and experiments,” IWCE-6. Computational Electronics, Extended Abstracts of 1998 Sixth International Workshop, Page(s): 250 – 253.
[79] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 804-809, 1995.
[80] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
[81] K. H. Yu; H. M. Chuang; K. W. Lin; S. Y. Cheng; C. C. Cheng; J. Y. Chen; and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
[82] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE, Electron Device Letters, Volume 19, Issue 9, Page(s): 345 – 347.
[83] M. Zaknoune, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron, Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67 As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,” 56th Annual, Device Research Conference Digest, Page(s): 34 – 35.
[84] Y. Cordier, M. Zaknoune, S. Bollaert, A. Cappy, “Charge control and electron transport properties in InyAl1-yAs/InxGa1-xAs metamorphic HEMTs: effect of indium content,” Conference Proceedings. Indium Phosphide and Related Materials, Page(s): 102 – 105.
[85] Leuther, A. Tessmann, M. Dammann, W. Reinert, M. Schlechtweg, M. Mikulla, M. Walther, G. Weimann, “70 nm low-noise metamorphic HEMT technology on 4 inch GaAs wafers,” International Conference, Indium Phosphide and Related Materials, Page(s): 215 – 218, 2003.
[86] W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, C. Xu, K.C. Hsieh, “High indium metamorphic HEMT on a GaAs substrate,” International Conference, Molecular Beam Epitaxy, Page(s): 73 – 74, 2002.
[87] D.W. Tu, S. Wang, J.S.M. Liu, K.C. Hwang, W. Kong, P.C. Chao, K. Nichols, “High-performance double-recessed InAlAs/InGaAs power metamorphic HEMT on GaAs substrate,” IEEE, Microwave and Guided Wave Letters, Volume 9, Issue 11, Page(s): 458 – 460, 1999.
[88] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, D. Theron, “60-GHz high power performance In0.35Al0.65As-In0-35Ga0.65As metamorphic HEMTs on GaAs,” IEEE, Electron Device Letters, Volume 24, Issue 12, Page(s): 724 – 726.
[89] K.C. Hwang, P.C. Chao, C. Creamer, K.B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT's,” IEEE, Electron Device Letters, Volume 20, Issue 11, Page(s): 551 – 553.
[90] W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, J.H. Jang, I. Adesida, K.L. Chang, K.C. Hsieh, “Properties of metamorphic materials and device structures on GaAs substrates,” 2002 International Conference, Molecular Beam Epitaxy, Page(s): 69 – 70.
[91] S. Bollaert, Y. Cordier, M. Zaknoune, T. Parenty, H. Happy, S. Lepilliet, A. Cappy, “fmax of 490 GHz metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate,” Electronics Letters, Volume 38, Issue 8, Page(s): 389 – 391.
[92] M. Zaknoune, Y. Cordier, S. Bollaert, D. Ferre, D. Theron, Y. Crosnier, “0.1 μm high performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMT on GaAs using inverse step InAlAs buffer,” Electronics Letters, Volume 35, Issue 19, Page(s): 1670 – 1671.
[93] S. Bollaert, Y. Cordier, M. Zaknoune, H. Happy, S. Lepilliet, A. Cappy, “0.06 μm gate length metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs with high f T and fMAX,” IPRM, IEEE International Conference, Indium Phosphide and Related Materials, Page(s): 192 – 195,2001.
[94] S.D. Mertens, J.A. del Alamo, “Electrical degradation of InAlAs/InGaAs metamorphic high-electron mobility transistors,” IEDM Technical Digest. International, Electron Devices Meeting, Page(s):9.2.1 - 9.2.4, 2001.
[95] D.C. Dumka, G. Cueva, W.E. Hoke, P.J. Lemonias, I. Adesida, “0.13 μm gate-length In0.52Al0.48As-In0.53Ga0.47As metamorphic HEMTs on GaAs substrate,” Conference Digest. 58th DRC, Device Research Conference, Page(s):83 – 84, 2000.
[96] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMTs on GaAs substrate,” IEEE, Electron Device Letters, Volume 20, Issue 3, Page(s): 123 – 125.
[97] C.S. Whelan, P.F. Marsh, W.E. Hoke, R.A. McTaggart, C.P. McCarroll, T.E. Kazior, “GaAs metamorphic HEMT (MHEMT): an attractive alternative to InP HEMTs for high performance low noise and power applications,” Conference Proceedings, Indium Phosphide and Related Materials, Page(s):337 – 340, 2000.
[98] C. Gaquiere, S. Bollaert, M. Zaknoune, Y. Cordier, D. Theron, Y. Crosnier, “Influence on power performances at 60 GHz of indium composition in metamorphic HEMTs,” Electronics Letters, Volume 35, Issue 17, Page(s): 1489 – 1491, 1999.
[99] J. H. Kim, S. J. Jo, and J. I. Song, “Improved microwave and noise performances of InGaP/In0.33Ga0.67As p-HEMT grown on patterned GaAs substrate,” IEE Electron. Lett., vol. 37, pp. 981-983, 2001.
[100] C. C. Meng, G. R. Liao, and S. S. Lu, “Formation of Submicron T-gate by rapid thermally reflowed resist with metal transfer layer,” IEE Electron. Letters, vol. 37, pp.1045-1046, 2001.
[101] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double d-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol. 41, pp. 456-457, 1994.