研究生: |
方文郁 Effendi, Sefli Sri Wahyu |
---|---|
論文名稱: |
分子伴侶 GroELS 增強碳酸酐酶之活性和穩定性用於生物礦化 Enhanced carbonic anhydrase activity and stability by chaperone GroELS for applications in biomineralization |
指導教授: |
吳意珣
Ng, I-Son |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 127 |
外文關鍵詞: | carbonic anhydrase, chaperone, TrxA, thermostability, immobilization, biomineralization |
相關次數: | 點閱:62 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
High activity and stability of CA are essential and urgent to propose due to extreme and harsh environment of carbon capture and sequestration. Three CA species as human CA II (hCAII), Mesorhizobium loti (MlCA), and Sulfurihydrogenibium yellowstonense (SyCA) have been optimized by recombinant engineering in E. coli under the inducible pET system. However, there are still difficulties in the over-production of heterologous protein. Here, the use of a novel fusion partner and molecule chaperone are the strategies for improving the protein expression levels, which refers to activity and capability. The TrxA and GroELS have been chosen to assist the protein folding of CA. TrxA fusion expression revealed a forceful function in enhancing protein production, in which the CA activity was approximately improved to 50-180%. Unfortunately, MlCA was mostly accumulated as inclusion bodies.
Therefore, the second strategy of using chaperonin GroELS was attempted; strong and weaken GroELS. Interestingly, the weaken GroELS was highly assisted soluble protein folding for those CAs in this study. Improvement of soluble protein expression levels elevated the CA activity over 100%, where MlCA showed a huge improvement about 30 times. Despite this, weaken GroELS was not powerful enough to assist the thermal capability of MlCA as strong GroELS, which strong GroELS successfully shifted the optimum temperature to 50oC. Furthermore, we designed CA under a constitutive promoter to optimize the system and balance with GroELS. Unexpectedly, the results possessed lower CA activity than those under the inducible system. Yet, the weaken GroELS has dramatically intensified the thermostability of SyCA. We considered that weaken GroELS was promoted only for CA, which initially has thermostability properties. Moreover, an in vitro assay was also conducted to prove the GroELS assistance in the activity of CA. Subsequently, the soluble protein of CA was applied in a two-column system to verify the function of CA as biocatalyst for CO2 fixation and conversion. The yield of calcium carbonate acquired was consistent with CA activity.
Finally, SyCA has been chosen to covalently bond on novel polyacrylonitrile (PAN) and polyethylene terephthalate (PET) nanofibers (PAN-PET-PAN donated as AEA) that was first fabricated by electrospinning. The resulting composite materials further crosslinked by the glutaraldehyde, which significantly increased thermostability up to 89.8% and 18.0% after heating at 60oC for 1 hour for immobilized crude and pure SyCA, respectively. After four repetitive attempts in the demonstration of CO2 sequestration, immobilized crude and pure SyCA on AEA also effectively improved the total CaCO3 yields to be 5.8 folds and 2.2 folds compared to free enzyme. Furthermore, the endurance of immobilized crude was investigated on flue gasses, which was retained its activity up to 57% on 50 mM NOx and 61% on 50 mM SOx presence.
This study presents efficient strategies engineering to improve the productivity and stability, immobilization techniques towards an industrial operating system, and also conduct to prospective area in the CAs.
1. Alber, B. E., and Ferry, J. G., (1994). A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. U. S. A. 91, 6909-6913.
2. Al-Hejin, A. M., Bora, R. S., and Ahmed, M. M. M., (2019). Plasmids for optimizing expression of recombinant proteins in E. coli. In Plasmid. IntechOpen.
3. Anderson, J., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., and Keasling, J. D., (2010). BglBricks: A flexible standard for biological part assembly. J. Biol. Eng. 4, 1.
4. Ashraf, R., Muhammad, M. A., Rashid, N., and Akhtar, M., (2017). Cloning and characterization of thermostable GroEL/GroES homologues from Geobacillus thermopakistaniensis and their applications in protein folding. J. Biotechnol. 254, 9-16.
5. Banerjee, S., and Deshpande, P.A., (2016). On origin and evolution of carbonic anhydrase isozymes: A phylogenetic analysis from whole-enzyme to active site. Comput. Biol. Chem. 61, 121-129.
6. Bilal, M., Asgher, M., Cheng, H., Yan, Y., and Iqbal, H. M., (2019). Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit. Rev. Biotechnol. 39, 202-219.
7. Bilal, M., Asgher, M., Shahid, M. and Bhatti, H. N., (2016). Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Int. J. Biol. Macromol. 86, 728–740.
8. Bond, G. M., Stringer, J., Brandvold, D. K., Simsek, F. A., Medina, M. G. and Egeland, G., (2001). Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energ. Fuel. 15, 309-316.
9. Bose, H., and Satyanarayana, T., (2016). Suitability of the alkalistable carbonic anhydrase from a polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic carbon sequestration. Bioproc. Biosyst. Eng. 39, 1515-1525.
10. Bose, T. S., (2017). Microbial carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming: prospects and perspective. Front. Microbiol. 8, 1615.
11. Brady, J. J., (2009). Advances in enzyme immobilisation. Biotechnol. Lett. 31, 1639.
12. Briganti, F., Mangani, S., Orioli, P., Scozzafava, A., Vernaglione, G., and Supuran, C. T., (1997). Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry 36, 10384-10392.
13. Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., and Hallett, J. P., (2018). Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062-1176.
14. Capasso, C., Luca, V. D., Carginale, V., Cannio, R., and Rossi, M., (2012). Biochemical properties of a novel and highly thermostable bacterial α‐carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1. J. Enz. Inhibit. Med. Chem. 27, 892‐ 897.
15. Chirica, L. C., Petersson, C., Hurtig, M., Jonsson, B. H., Borén, T., and Lindskog, S., (2002). Expression and localization of α-and β-carbonic anhydrase in Helicobacter pylori. Biochim. Biophys. Acta Proteins Proteomics 1601, 192-199.
16. Correa, A. C., Ortega, C. O., Obal, G. O., Alzari, P. A., Vincentelli, R.V., and Oppezzo, P. J. O., (2014). Generation of a vector suite for protein solubility screening. Front. Microbiol. 5, 67.
17. Cura, V., Gangloff, M., Eiler, S., Moras, D., and Ruff, M., (2008). Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands. Acta. Cryst. 64, 54-57.
18. De Luca, V., Vullo, D., Scozzafava, A., Carginale, V., Rossi, M., Supuran, C. T., and Capasso, C., (2012). Anion inhibition studies of an α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Bioorg. Med. Chem. Lett. 22, 5630-5634.
19. Deb, S. S., Reshamwala, S. M., and Lali, A. M., (2019). Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain. Biotechnol. Lett. 41, 823-836.
20. Di Fiore, A., Capasso, C., De Luca, V., Monti, S. M., Carginale, V., Supuran, C. T., ... and De Simone, G., (2013). X-ray structure of the first extremo-α-carbonic anhydrase, a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr. D 69, 1150-1159.
21. DiMario, R. J., Machingura, M. C., Waldrop, G. L., and Moroney, J. V., (2018). The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci. 268, 11-17.
22. Dobrinski, K. P., Boller, A. J., and Scott, K. M., (2010). Expression and function of four carbonic anhydrase homologs in the deep-sea chemolithoautotroph Thiomicrospira crunogena. Appl. Environ. Microbiol. 76, 3561-3567.
23. Dobson, C. M., (2003). Protein folding and misfolding. Nature 426, 884-890.
24. Doğaç, Y. İ., Deveci, İ., Mercimek, B., and Teke, M., (2017). A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. Int. J. Biol. Macromol. 96, 302-311.
25. Dubendorff, J. W., and Studier, F.W., (1991). Creation of a T7 autogene: Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. J. Mol. Biol. 219, 61-68.
26. Eiteman, M.A., and Altman, E., (2006). Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24, 530-536.
27. Eriksson, A. E., Jones, T. A., and Liljas, A., (1988). Refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins 4, 274-282.
28. Eş, I., Vieira, J. D. G. and Amaral, A. C., (2015). Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. 99, 2065-2082.
29. Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioproc. Biosyst. Eng. 36, 375-381.
30. Faccio, G., (2018). From protein features to sensing surfaces. Sensors 18, 1204.
31. Faridi, S., and Satyanarayana, T., (2016). Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1. Int. J. Biol. Macromol. 89, 659-668.
32. Faridi, S., Bose, H., and Satyanarayana, T., (2017). Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the surface of modified iron magnetic nanoparticles in carbon sequestration. Energ. Fuel. 31, 3002-3009.
33. Farrelly, D. J., Everard, C. D., Fagan, C. C., and McDonnell K. P., (2013). Carbon sequestration and the role of biological carbon mitigation: a review. Renew. Sust. Energ. Rev. 21, 712-727.
34. Fernández, P. A., Roleda, M. Y., Rautenberger, R., and Hurd, C. L., (2018). Carbonic anhydrase activity in seaweeds: overview and recommendations for measuring activity with an electrometric method, using Macrocystis pyrifera as a model species. Mar. Biol. 165, 88.
35. Figueiredo, K. C., Alves, T. L., and Borges, C. P., (2009). Poly (vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J. Appl. Polym. Sci. 111, 3074-3080.
36. Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K. and Skeie, R. B., (2008). Climate forcing from the transport sectors. Proc. Natl. Acad. Sci. U. S. A. 105, 454-458.
37. Gangan, M.S., and Athale, C.A., (2017). Threshold effect of growth rate on population variability of Escherichia coli cell lengths. Royal Soc. Open Sci. 4, 160417.
38. Giri, A., Banerjee, U. C., Kumar, M., and Pant, D., (2018). Intracellular carbonic anhydrase from Citrobacter freundii and its role in bio-sequestration. Bioresour. Technol. 267, 789-792.
39. Gruber, T.M. and Gross, C.A., 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466.
40. Gu, P., Yang, F., Su, T., Wang, Q., Liang, Q., and Qi, Q., (2015). A rapid and reliable strategy for chromosomal integration of gene (s) with multiple copies. Sci. Rep. 5, 9684.
41. Haldimann, A., and Wanner, B. L., (2001). Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183, 6384-6393.
42. Hartl, F. U., (1996). Molecular chaperones in cellular protein folding. Nature 381, 571-580.
43. Hartl, F. U., Bracher, A., and Hayer-Hartl, M., (2011). Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332.
44. Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P., Joshi, M., Osborn, T.J., Masson-Delmotte, V., Mignot, J. and Thorne, P., (2017). Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98,1841-1856.
45. Hsia, J., Holtz, W. J., Maharbiz, M. M., Arcak, M., and Keasling, J. D., (2016). Modular synthetic inverters from zinc finger proteins and small RNAs. PloS one 11.
46. Hsu, K. P., Tan, S. I., Chiu, C. Y., Chang, Y. K., and Ng, I. S., (2019). ARduino‐pH Tracker and screening platform for characterization of recombinant carbonic anhydrase in Escherichia coli. Biotechnol. Prog. 35, e2834.
47. Hsu, K. P., Tan, S. I., Chiu, C. Y., Chang, Y. K., and Ng, I. S., (2019). ARduino‐pH Tracker and screening platform for characterization of recombinant carbonic anhydrase in Escherichia coli. Biotechnol. Prog. 35, e2834.
48. Huang, F., Xu, Y., Liao, S., Yang, D., Hsieh, Y. L., and Wei, Q., (2013). Preparation of amidoxime polyacrylonitrile chelating nanofibers and their application for adsorption of metal ions. Materials 6, 969-980.
49. Ishihama, A., (2010). Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol. Rev. 34, 628-645.
50. Iverson, T. M., Alber, B. E., Kisker, C., Ferry, J. G., and Rees, D. C. (2000). A closer look at the active site of γ-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39, 9222-9231.
51. Jajesniak, P., Ali, H. E. M. O., and Wong, T. S., (2014). Carbon dioxide capture and utilization using biological systems: opportunities and challenges. J. Bioprocess Biotech. 4, 1-15.
52. Jakubowski, M., Szahidewicz-Krupska, E., and Doroszko, A., (2018). The Human Carbonic Anhydrase II in Platelets: An Underestimated Field of Its Activity. BioMed Res. Int.
53. Jing, G., Pan, F., Lv, B., and Zhou, Z., (2015). Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture. Process Biochem. 50, 2234-2241.
54. Jo, B. H., Kim, I. G., Seo, J. H., Kang, D. G., and Cha, H.J., (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl. Environ. Microbiol. 79, 6697-6705.
55. Jo, B. H., Seo, J. H., and Cha, H. J., (2014). Bacterial extremo-α-carbonic anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration. J. Mol. Catal. B 109, 31-39.
56. Kacar, B., Ge, X., Sanyal, S., and Gaucher, E. A., (2017). Experimental evolution of Escherichia coli harboring an ancient translation protein. J. Mol. Evol. 84, 69-84.
57. Kalloniati, C., Tsikou, D., Lampiri, V., Fotelli, M.N., Rennenberg, H., Chatzipavlidis, I., Fasseas, C., Katinakis, P. and Flemetakis, E., (2009). Characterization of a Mesorhizobium loti α-type carbonic anhydrase and its role in symbiotic nitrogen fixation. J. Bacteriol. 191, 2593-2600.
58. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K. and Kimura, T., (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA res. 7, 331-338.
59. Kanth, B. K., Jun, S. Y., Kumari, S., and Pack, S. P., (2014). Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: Its expression and characterization for CO2-sequestration applications. Process Biochem. 49, 2114-2121.
60. Kanth, B. K., Lee, J., and Pack, S. P., (2013). Carbonic anhydrase: Its biocatalytic mechanisms and functional properties for efficient CO2 capture process development. Eng. Life Sci. 13, 422-431.
61. Kawakami, K., Saitoh, T., and Ishihama, A., (1979). Biosynthesis of RNA polymerase in Escherichia coli. Mol. Gen. Genet. 174, 107-116.
62. Kean, K. M., Porter, J. J., Mehl, R. A., and Karplus, P. A., (2018). Structural insights into a thermostable variant of human carbonic anhydrase II. Protein Sci. 27, 573-577.
63. Ki, M. R., Min, K., Kanth, B. K., Lee, J., and Pack, S. P., (2013). Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess. Biosyst. Eng. 36, 375-381.
64. Ki, M., and Pack, S. P., (2020). Fusion tags to enhance heterologous protein expression. Appl. Microbiol. Biotechnol. 104, 2411–2425.
65. Ki, M.R., Nguyen, T.K.M., Kim, S.H., Kwon, I., and Pack, S.P., (2016). Chimeric protein of internally duplicated α-type carbonic anhydrase from Dunaliella species for improved expression and CO2 sequestration. Process Biochem. 51, 1222-1229.
66. Kim, C. S., Yang, Y. J., Bahn, S. Y., and Cha, H. J. (2017). A bioinspired dual-crosslinked tough silk protein hydrogel as a protective biocatalytic matrix for carbon sequestration, NPG Asia Mater. 9, e391.
67. Kim, J., and Kim, K. H., (2017). Effects of minimal media vs. complex media on the metabolite profiles of Escherichia coli and Saccharomyces cerevisiae. Process Biochem. 57, 64-71.
68. Kim, J., Grate, J. W., and Wang, P., (2006). Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017-1026.
69. Kleinman, L. I., Petering, H. G., and Sutherland, J. M., (1967). Blood carbonic anhydrase activity and zinc concentration in infants with respiratory-distress syndrome. N. Engl. J. Med. 277, 1157-1161.
70. Kucuk, M., and Gulcin, İ., (2016). Purification and characterization of the carbonic anhydrase enzyme from Black Sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on enzyme activity. Environ. Toxicol. Pharmacol. 44, 134-139.
71. LaVallie, E. R., Lu, Z., Diblasio-Smith, E. A., Collins-Racie, L. A., and McCoy, J. M., (2000). Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol.326, 322-340.
72. Lee, R. B. Y., Smith, J. A. C., and Rickaby, R. E., (2013). Cloning, expression and characterization of the δ‐carbonic Anhydrase of Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 49, 170-177.
73. Li, C. X., Jian, X. C., Qiu, Y. J.,and Xu, J. H., (2015). Identification of a new thermostable and alkali-tolerant α-carbonic anhydrase from Lactobacillus delbrueckii as a biocatalyst for CO2 biomineralization. Bioresour. Bioprocess. 2, 44.
74. Li, Y., Wang, H., Lu, J., Chu, A., Zhang, L., Ding, Z., Xu, S., Gu, Z., and Shi, G., (2019). Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry. Bioresour. Technol. 274, 9-17.
75. Lin, W.R., Lai, Y.C., Sung, P.K., Tan, S.I., Chang, C.H., Chen, C.Y., Chang, J.S. and Ng, I.S., (2018). Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J. Taiwan Inst. Chem. Eng. 93, 131-141.
76. Lindskog, S., (1997). Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 74, 1–20.
77. Liow, L. T., Go, M. D. K., and Yew, W. S., (2019). Characterisation of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472. Engineering Biology, 3(3), pp.57-66.
78. Liu, N., Bond, G.M., Abel, A., McPherson, B.J. and Stringer, J., (2005). Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines. Fuel Process. Technol. 86, 1615-1625.
79. Liu, Y., Zhang, G., Sun, H., Sun, X., Jiang, N., Rasool, A., Lin, Z,. and Li, C., (2014). Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices. Bioresour. Technol. 170, 38-44.
80. Lou, T., Yan, X., and Wang, X., (2019). Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption. Int. J. Biol. Macromol. 135, 919-925.
81. Marcus, E. A., Moshfegh, A. P., Sachs, G., and Scott, D. R., (2005). The periplasmic α‐carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J. Bacteriol. 187, 729– 738.
82. McKenzie, G.J., and Craig, N.L., (2006). Fast, easy and efficient: site-specific insertion of transgenes into enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol. 6, 39.
83. Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C., Frieler, K., Knutti, R., Frame, D.J., and Allen, M.R., (2009). Greenhouse-gas emission targets for limiting global warming to 2oC. Nature. 458, 1158-1162.
84. Meldrum, N. U., and Roughton, F. J., (1933). Carbonic anhydrase. Its preparation and properties. J. Physiol. 80, 113-142.
85. Melkani, G.C., Zardeneta, G. and Mendoza, J.A., (2003). The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure. Biometals 16, 479-484.
86. Merle, G., Fradette, S., Madore, E., and Barralet, J. E., (2014). Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture. Langmuir 30, 6915-6919.
87. Merlo, R., Del Prete, S., Valenti, A., Mattossovich, R., Carginale, V., Supuran, C. T., Capasso, C., and Perugino, G., (2019). An AGT-based protein-tag system for the labelling and surface immobilization of enzymes on E. coli outer membrane. J. Enzyme Inhib. Med. Chem. 34, 490-499.
88. Meyer, H. P., and Schmidhalter, D. R., (2012). Microbial expression systems and manufacturing from a market and economic-perspective. Innov. Biotechnol. 211-250.
89. Migliardini, F., De Luca, V., Carginale, V., Rossi, M., Corbo, P., Supuran, C. T., and Capasso, C., (2014). Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam. J. Enzyme. Inhib. Med. Chem. 29, 146-150.
90. Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., and Allen, M. R., (2017). Emission budgets and pathways consistent with limiting warming to 1.5℃. Nat. Geosci. 10, 741-747.
91. Min, K. H., Son, R. G., Ki, M. R., Choi, Y. S., and Pack, S. P., (2016). High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development. Chemosphere. 143, 128-134.
92. Mirjafari, P., Asghari, K., and Mahinpey, N., (2007). Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind. Eng. Chem. Res. 46, 921-926.
93. Moffatt, B. A., and Studier, F.W., (1987). T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 2, 221-227.
94. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., and Wahab, R. A., (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotec. Eq. 29, 205-220.
95. Moore, S. J., Lai, H. E., Kelwick, R. J., Chee, S. M., Bell, D. J., Polizzi, K. M., and Freemont, P. S., (2016). EcoFlex: a multifunctional MoClo kit for E. coli synthetic biology. ACS Synth. Biol. 5,1059-1069.
96. Murray, A.B., and McKenna, R., (2019). b-Carbonic anhydrases. Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target. 55.
97. Nakagawa, S., Shtaih, Z., Banta, A., Beveridge, T. J., Sako, Y., and Reysenbach, A. L., (2005). Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int. J. Syst. Evol. Microbiol. 55, 2263–2268.
98. Nelson, J. M., and Griffin, E. G., (1916). Adsorption of invertase. J. Am. Chem. Soc. 38, 1109–1115.
99. Ng, I. S., Song, C. P., Ooi, C. W., Tey, B. T., Lee, Y. H., and Chang, Y. K., (2019). Purification of lysozyme from chicken egg white using nanofiber membrane immobilized with Reactive Orange 4 dye. Int. J. Biol. Macromol. 134, 458-468.
100. Nguyen, T. K. M., Ki, M. R., Son, R. G. and Pack, S. P., (2019). The NT11, a novel fusion tag for enhancing protein expression in Escherichia coli. Appl. Microbiol. Biotechnol. 103, 2205-2216.
101. Nishimori, I., Onishi, S., Takeuchi, H., and Supuran, C. T., (2008). The α and β classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr. Pharm Des. 14, 622-630.
102. North, M., and Styring, P., (2015). Perspectives and visions on CO2 capture and utilisation, Faraday Discuss. 183, 489-502.
103. Nyman, P. O. (1961). Purification and properties of carbonic anhydrase from human erythrocytes. Biochim. Biophys. Acta 52, 1-12.
104. Orr Jr, F. M., (2018). Carbon Capture, Utilization, and Storage: An Update. SPE J. 23, 2-444.
105. Ortega, C., Prieto, D., Abreu, C., Oppezzo, P., and Correa, A., (2018). Multi-compartment and multi-host vector suite for recombinant protein expression and purification. Front. Microbiol. 9, 1384.
106. Park, J. M., Kim, M., Lee, H. J., Jang, A., Min, J., and Kim, Y. H., (2012). Enhancing the production of Rhodobacter sphaeroides-derived physiologically active substances using carbonic anhydrase-immobilized electrospun nanofibers. Biomacromolecules 13, 3780–3786.
107. Park, J. M., Kim, M., Park, H. S., Jang, A., Min, J., and Kim, Y. H., (2013). Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int. J. Biol. Macromol. 54, 37-43.
108. Park, S. Y., Binkley, R. M., Kim, W. J., Lee, M. H., and Lee, S. Y., (2018). Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 49, 105-115.
109. Parra-Cruz, R., Lau, P. L., Loh, H. S., and Pordea, A., (2020). Engineering of Thermovibrio ammonificans carbonic anhydrase mutants with increased thermostability. J. CO2 Util. 37, 1-8.
110. Perfetto, R., Del Prete, S., Vullo, D., Sansone, G., Barone, C. M., Rossi, M., Supuran, C. T., and Capasso, C., (2017). Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles. J. Enzyme. Inhib. Med. Chem. 32, 759-766.
111. Persson, M., Carlsson, U., and Bergenhem, N,. (1997). GroEL provides a folding pathway with lower apparent activation energy compared to spontaneous refolding of human carbonic anhydrase II. FEBS Lett. 411, 43-47.
112. Platt, R., Drescher, C., Park, S. K., and Phillips, G. J., (2000). Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 43, 12-23.
113. Qin, J. Y., Zhang, L., Clift, K. L., Hulur, I., Xiang, A. P., Ren, B. Z., and Lahn, B. T., (2010). Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PloS one 5.
114. Ramanan, R., Kannan, K., Sivanesan, S. D., Mudliar, S., Kaur, S., Tripathi, A. K., and Chakrabarti, T., (2009). Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J. Microb. Biot. 25, 981-987.
115. Razo-Mejia, M., Barnes, S. L., Belliveau, N. M., Chure, G., Einav, T., Lewis, M., and Phillips, R., (2018). Tuning transcriptional regulation through signaling: A predictive theory of allosteric induction. Cell Syst. 6, 456-469.
116. Ren, X., Akdag, A., Zhu, C., Kou, L., Worley, S. D., and Huang, T. S., (2009). Electrospun polyacrylonitrile nanofibrous biomaterials. J. Biomed. Mater. Res. A 91, 385-390.
117. Roberts, S. B., Lane, T. W., and Morel, F. M., (1997). Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae) 1. J. Phycol. 33, 845-850.
118. Rosano, G. L., and Ceccarelli, E. A., (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172.
119. Rosano, G. L., and Ceccarelli, E. A., (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172.
120. Rosenberg, A. H., Lade, B. N., Dao-shan, C., Lin, S. W., Dunn, J.J., and Studier, F. W., (1987). Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 1, 125-135.
121. Sabido, A., Martínez, L. M., de Anda, R., Martínez, A., Bolívar, F., and Gosset, G. (2013). A novel plasmid vector designed for chromosomal gene integration and expression: Use for developing a genetically stable Escherichia coli melanin production strain. Plasmid 69, 16-23.
122. Saeki, K., and Ronson, C. W., (2014). Genome sequence and gene functions in Mesorhizobium loti and relatives. in The Lotus japonicus Genome. Compendium of Plant Genomes, eds S. Tabata, and J. Stougaard (Berlin: Springer), 41-57.
123. Sahoo, P. C., Sambudi, N. S., Park, S. B., Lee, J. H., and Han, J. I., (2015). Immobilization of carbonic anhydrase on modified electrospun poly (lactic acid) membranes: quest for optimum biocatalytic performance. Catal. Letters 145, 519-526.
124. Sanderson, B. M., O'Neill, B. C., and Tebaldi, C., (2016). What would it take to achieve the Paris temperature targets?. Geophys. Res. Lett. 43, 7133-7142.
125. Scheidle, M., Dittrich, B., Klinger, J., Ikeda, H., Klee, D., and Büchs, J., (2011). Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol. 11, 25.
126. Schlegel, S., Genevaux, P., and de Gier, J.W., (2017). Isolating Escherichia coli strains for recombinant protein production. Cell Mol. Life Sci. 74, 891-908.
127. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., and Schomburg, D., (2004). BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. D431-D433.
128. Sezonov, G., Joseleau-Petit, D., and d'Ari, R., (2007). Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol. 189, 8746-8749.
129. Shakerian, F., Kim, K. H., Szulejko, J. E., and Park, J.W., (2015). A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl. Energy 148, 10-22.
130. Sharma, A., and Bhattacharya, A. (2010). Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J. Mol. Catal. B Enzym. 67, 122-128.
131. Sharma, A., Bhattacharya, A. and Singh, S., (2009). Purification and characterization of an extracellular carbonic anhydrase from Pseudomonas fragi. Process Biochem. 44, 1293-1297.
132. Shilling, P. J., Mirzadeh, K., Cumming, A. J., Widesheim, M., Köck, Z., and Daley, D. O., (2020). Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Commun. Biol. 3, 1-8.
133. Shimada, T., Tanaka, K., and Ishihama, A., (2017). The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase. PloS one 12.
134. Shimada, T., Yamazaki, Y., Tanaka, K., and Ishihama, A., (2014). The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli. PloS one 9.
135. Smith, K. S., and Ferry J.G., (2000). Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev. 24, 335-366.
136. Smith, K. S., Jakubzick, C., Whittam, T. S., and Ferry J.G., (1999). Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 96, 15184-15189.
137. Smith, W. P., Davit, Y., Osborne, J. M., Kim, W., Foster, K. R., and Pitt-Francis, J. M., (2017). Cell morphology drives spatial patterning in microbial communities. Proc. Natl. Acad. Sci. U.S.A. 114, E280-E286.
138. Spiragelli, B. P., and Kawatra, S. K., (2013). Opportunities and challenges in carbon dioxide capture. J. CO2 Util. 1, 69-87.
139. Stano, N. M., and Patel, S. S., (2004). T7 lysozyme represses T7 RNA polymerase transcription by destabilizing the open complex during initiation. J. Biol. Chem. 279, 16136-16143.
140. Studier, F.W., (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60-89.
141. Studier, F.W., (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207-234.
142. Sundaram, S., and Thakur, I. S., (2018). Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria. Bioresour. Technol. 253, 368-371.
143. Supuran, C. T., and Capasso, C., (2017). An overview of the bacterial carbonic anhydrases. Metabolites 7, 56.
144. Tan, S. I., Han, Y. L., Yu, Y. J., Chiu, C. Y., Chang, Y. K., Ouyang, S., Fan, K. C., Lo, K. H., and Ng, I. S., (2018). Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase. Process Biochem. 73, 38-46.
145. Tan, S. I., You, S. C., Shih, I. T., and Ng, I. S., (2020). Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli. Journal of Biosci. Bioeng. 129, 387-394.
146. Tang, C., Saquing, C. D., Morton, S. W., Glatz, B. N., Kelly, R. M., and Khan, S. A., (2014). Cross-linked polymer nanofibers for hyperthermophilic enzyme immobilization: Approaches to improve enzyme performance. ACS Appl. Mater. Interfaces 6, 11899-11906.
147. Tian, Y., Chen, J., Yu, H., and Shen, Z., (2016). Overproduction of the Escherichia coli chaperones GroEL-GroES in Rhodococcus ruber improves the activity and stability of cell catalysts harboring a nitrile hydratase. J Microbiol Biotechnol. 26, 337.
148. Tomas, C. A., Welker, N. E., and Papoutsakis, E. T., (2003). Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl. Environ. Microbiol. 69, 4951-4965.
149. Tosa, T., Mori, T., Fuse, N. and Chibata, I., (1966). Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 31, 214.
150. Tripp, B. C., Smith, K., Smith, and Ferry, J. G., (2001). Carbonic anhydrase: new insights for an ancient enzyme. J. Biol. Chem. 276, 48615-48618.
151. Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Nam, S. C., and Yoon, Y., (2012). Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO2 sequestration. Chem. Eur. J. 18, 12028–12034.
152. Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Yoon, Y. I., and Nam, S. C., (2011). Capture and sequestration of CO2 by human carbonic anhydrase covalently immobilized onto amine-functionalized SBA-15. J. Phys. Chem. C Nanomater. Interfaces. 115, 20209–20216.
153. Waegeman, H., Beauprez, J., Moens, H., Maertens, J., De Mey, M., Foulquié-Moreno, M. R., Heijnen, J. J., Charlier, D., and Soetaert, W., (2011). Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol. 11, 70.
154. Wang, S. S. S., Yang, S. M., Hsin, A., and Chang, Y. K., (2018). Dye-affinity nanofibrous membrane for adsorption of lysozyme: preparation and performance evaluation. Food Technol. Biotechnol. 56, 40.
155. Wang, X., Wang, C., Pan, M., Wei, J., Jiang, F., Lu, R., Liu, X., Huang, Y., and Huang, F., (2017). Chaperonin-nanocaged hemin as an artificial metalloenzyme for oxidation catalysis. ACS Appl. Mater. Interfaces 9, 25387-25396.
156. Westmann, C. A., Alves, L. D. F., Silva-Rocha, R., and Guazzaroni, M. E., (2018). Mining novel constitutive promoter elements in soil metagenomic libraries in Escherichia coli. Front. Microbiol. 9,1344.
157. Wilbur, K. M., and Anderson, N. G., (1948). Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147-154.
158. Wingfield, P.T., (2014). Preparation of soluble proteins from Escherichia coli. Curr. Protoc. Protein Sci. 8, 1-22
159. Wingo, T., Tu, C., Laipis, P. J., and Silverman, D. N., (2001). The catalytic properties of human carbonic anhydrase IX. Biochem. Biophys. Res. Commun. 3, 666-669.
160. Wong, F., Renner, L.D., Özbaykal, G., Paulose, J., Weibel, D.B., Van Teeffelen, S., and Amir, A., (2017). Mechanical strain sensing implicated in cell shape recovery in Escherichia coli. Nat. Microbiol. 2, 17115.
161. Woo, K. M., Lee, I., Hong, S. G., An, S., Lee, J., Oh, E., and Kim, J., (2015). Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion. Chem. Eng. J. 276, 232-239.
162. Wu, Y., Zhao, X., Li, P., and Huang, H., (2007). Impact of Zn, Cu, and Fe on the activity of carbonic anhydrase of erythrocytes in ducks. Biol. Trace Element Res. 118, 227-232.
163. Xin, Y., Mu, Y., Kong, J., and Guo, T., (2019). Targeted and repetitive chromosomal integration enables high-level heterologous gene expression in Lactobacillus casei. Appl. Environ. Microbiol. 85, e00033-19.
164. Ye, P., Xu, Z. K., Wu, J., Innocent, C., and Seta, P., (2006). Nanofibrous poly (acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials 27, 4169-4176.
165. Yeom, S. J., Kim, M., Kwon, K. K., Fu, Y., Rha, E., Park, S. H., Lee, H., Kim, H., Lee, D. H., Kim, D. M., and Lee, S. G., (2018). A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9, 1-12.
166. Yeom, S.J., Kim, Y.J., Lee, J., Kwon, K.K., Han, G.H., Kim, H., Lee, D.H., Kim, H.S. and Lee, S.G., (2016). Long-term stable and tightly controlled expression of recombinant proteins in antibiotics-free conditions. PloS one. 11.
167. Yoon, S. H., Han, M. J., Jeong, H., Lee, C. H., Xia, X. X., Lee, D. H., Shim, J. H., Lee, S. Y., Oh, T. K., and Kim, J. F., (2012). Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol. 13, R37.
168. Zhang, H., Nie, H., Yu, D., Wu, C., Zhang, Y., White, C. J. B., and Zhu, L., (2010). Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption. Desalination 256, 141-147.
169. Zhang, J., Lv, X., Xu, R., Tao, X., Dong, Y., Sun, A., and Wei, D,. (2015). Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Appl. Microbiol. Biotechnol. 99, 6705-6713.
170. Zhang, X., Ng, I. S., and Chang, J. S., (2016). Cloning and characterization of a robust recombinant azoreductase from Shewanella xiamenensis BC01. J. Taiwan Inst. Chem. Eng. 61, 97-105.
171. Zhu, J., and Sun, G., (2014). Facile fabrication of hydrophilic nanofibrous membranes with an immobilized metal–chelate affinity complex for selective protein separation. ACS appl. mater. interfaces 6, 925-932.
172. Zucca, S., Pasotti, L., Politi, N., Casanova, M., Mazzini, G., De Angelis, M. G. C., and Magni, P., (2015). Multi-faceted characterization of a novel LuxR-repressible promoter library for Escherichia coli. PLoS One 10.