研究生: |
許智雄 Hsu, Chih-Hsiung |
---|---|
論文名稱: |
摻鋁氧化鋅奈米柱陣列薄膜:合成、修飾及光電化學應用 Al-doped ZnO Nanorod Array Thin Film: Synthesis, Modification, and Photoelectrochemical Application |
指導教授: |
陳東煌
Chen, Dong-Hwang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 172 |
中文關鍵詞: | 氧化鋅奈米柱 、鋁摻雜 、光電化學電池 、量子點 、氫氣處理 |
外文關鍵詞: | ZnO nanorod, Al-doped, photoelectrochemical cell, quantum dots, hydrogen treatment |
相關次數: | 點閱:147 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關摻鋁氧化鋅奈米柱陣列薄膜之合成、修飾及光電化學應用,目標在發展一不須額外使用透明導電膜之光電極,並藉量子點敏化,來提升其對可見光的吸收。內容主要包括三部份:(1) 摻鋁氧化鋅奈米柱陣列薄膜之製備與特性,(2) 摻鋁氧化鋅奈米柱陣列薄膜的光電化學,(3) 摻鋁氧化鋅奈米柱陣列薄膜之表面修飾及其在太陽光裂解水產氫上的應用。
關於摻鋁氧化鋅奈米柱陣列薄膜之製備與特性,係藉由化學浴沈積法來合成不同原子比例之鋁摻雜氧化鋅奈米柱陣列薄膜,摻鋁氧化鋅奈米柱陣列垂直玻璃基板,且沿c軸方向[001]生長。此外,其平均直徑與平均長度分別為64.7 16.8 nm與1.0 μm,並呈現纖維鋅礦的結構。經由能量分散X光譜與X光光電子光譜的分析,確認鋁原子確實摻雜進入氧化鋅的晶格當中。鋁摻雜不僅不會改變氧化鋅晶體的結構與生長方向,而且電阻率會隨著鋁含量的增加有明顯的下降。其原因來自於,增加大量的載子濃度緣故,並造成載子遷移率的降低。在可見光穿透圖譜中,在高鋁含量摻雜時,穿透度隨之下降。經過氫氣處理過後,氧化鋅奈米柱陣列的形狀,仍然維持一維方向,且其電阻率有明顯的降低,由於產生大量氧空缺與氫原子填隙。當真實Al/Zn原子比例約為3.7 %時,電阻率可以降低約3個級數,其值約為6.4×10-4 Ω.cm。此外,氫氣處理過後的氧化鋅奈米柱陣列,其穿透度有明顯的改善,但改善幅度略小於低濃度鋁摻雜;但在高濃度摻鋁時,其穿透度反而下降。對摻鋁氧化鋅奈米柱陣列的薄膜元件進行電壓電流的量測,發現氫氣處理過後且摻鋁的氧化鋅奈米柱陣列的電流值可以提升100倍。
關於摻鋁氧化鋅奈米柱陣列薄膜的光電化學,係以氫氣處理後之摻鋁氧化鋅奈米柱陣列薄膜擁有較好的性能。因同時具有透明導電膜薄膜及一維奈米結構半導體之功能,可用作於單層光電極之太陽光電解水製氫之應用。在此研究中,摻鋁及氫氣處理之氧化鋅奈米柱陣列薄膜展現對暗電流、光電流和產氫效率,有增強改善的效果,且氫氣處理的效果比摻鋁的效果更為顯著。此外,在真實Al/Zn原子比例為3.7 %時,其最大產氫效率為0.02 %。此效率極低,但可以藉由量子點或是染料敏化來提昇與改善。氫氣處理對半導體光電極而言,可以改善其光應答速度與穩定性。摻鋁及氫氣處理的氧化鋅奈米柱陣列薄膜之衰退時間常數與上升時間常數分別為1.71與1.22秒。在經過50次照光下的電壓電流掃描後,同時擁有氫氣處理與摻鋁的氧化鋅奈米柱陣列薄膜的一維結構,沒有重大的破壞。這說明了,同時以氫氣處理與摻鋁之氧化鋅奈米柱陣列薄膜可以對抗光腐蝕。因擁有好的光應答與穩定性的特性,直接取代傳統的透明導電玻璃(ITO與FTO)作為半導體光電極的概念,來裂解水製氫是可行的,並可廣泛應用在光電化學領域中。
關於摻鋁氧化鋅之表面修飾及其在太陽光裂解水產氫上的應用,係由化學浴法沈積CdS量子點進行敏化,並探討CdS敏化層數對光電化學特性的影響。CdS沈積在摻鋁之氧化鋅奈米柱表面,可以有效地增加460 nm附近的吸收,並且減少電子電洞的再結合與增加電子與電洞的分離,展現較佳的光電化學特性。此外,同時經由氫氣處理與摻鋁之氧化鋅奈米柱當作光電極裝飾CdS,於敏化層數為3次時,形成完整被覆於表面上,擁有最大的短路電流3.21 mA/cm2及最大的產氫效率4.15 %。我們所製備出的奈米複合光電極的效能,可以接近或是略高一些文獻報導用ITO、FTO或Ti foil等當基材的光電極。此外,CdS敏化摻鋁氧化鋅奈米柱有較好光敏感與光穩定性。我們也比較在相同CdS敏化層數下,摻鋁及氫氣處理對光電極的效能的影響。研究顯示,高導電度的電子傳輸層有較高的產氫效率。這也成功地驗證,同時氫氣處理與摻鋁的氧化鋅奈米柱當光電極基材是很有潛力的應用,藉由沈積無機量子點來敏化,更可大幅提升吸收可見光的能力,進而改善整體的產氫效能。
This dissertation concerns the Al-doped ZnO nanorod array thin film about their synthesis, modification, and photoelectrochemical application. The main aim is to develop a photoanode without an extra transparent conducting oxide and to enhance it’s absorption in the visible light region via sensitization by quantum dots. The content contains three parts: (1) The preparation and properties of Al-doped ZnO nanorod array thin film;(2) photoelectrochemical properties of Al-doped ZnO nanorod array thin film;(3) surface modification of Al-doped ZnO nanorod array thin film for solar water splitting application.
Al-doped ZnO (AZO) nanorod arrays thin films with various Al/Zn molar ratios were synthesized by chemical bath deposition. The resultant AZO nanorods were well-aligned at the glass substrate, growing vertically along the c-axis [001] direction. Also, they had an average diameter of 64.7 16.8 nm and an average length of about 1.0 μm with the structure of wurtzite-type ZnO. The analyses of energy dispersive X-ray spectra and X-ray photoelectron spectra indicated that Al atoms have been doped into the ZnO crystal lattice. The doping of Al atoms did not result in the significant changes in the structure and crystal orientation, but the electrical resistivity was found to increase first and then decrease with increasing the Al content owing to the increase of carrier concentration and the decrease of mobility. Also, the transmission in visible region increased but the increase was reduced at higher Al doping level. After hydrogen treatment, the AZO nanorod arrays thin films remained their morphology unchanged. However, the electrical resistivity decreased significantly due to the formation of oxygen vacancies and interstitial hydrogen atoms. When the real Al/Zn molar ratio was about 3.7 %, the conductivity was enhanced about 1000 times and a minimum electrical resistivity of 6.410-4 Ω-cm was obtained. Also, the transmission of ZnO nanorod arrays thin film in visible region was significantly increased but the increase was less significant for AZO nanorod arrays thin film, particularly at higher Al doping level. In addition, the current-voltage curves of the thin film devices with ZnO or AZO nanorod arrays revealed that AZO had higher current response than ZnO and hydrogen treatment led to the more significant enhancement of current responses (about 100-fold).
ZnO nanorod array thin film with Al-doping and hydrogen treatment was developed as a photoelectrode combining the functions of transparent conducting oxide thin film and photoactive 1-dimentional nanostructured semiconductor into a single layer for photoelectrochemical water splitting. In this study, it was demonstrated that hydrogen treatment and Al-doping enhanced the dark currents, photocurrents, and hydrogen generation efficiencies largely and the enhancement by hydrogen treatment was more significant. The maximum photoinduced hydrogen generation efficiency was about 0.020 %. The efficiency was low, but it was also significantly improved by quantum dots and dye sensitization. Furthermore, hydrogen treatment also improved the photosensitivity and the stability under illumination significantly. The minimum decay time constant and rise time constant were 1.71 and 1.22 s, respectively. And after current-voltage scanning upon illumination for 50 cycles, the 1-dimentional morphology still remained unchanged but those without Al-doping and/or hydrogen treatment were altered seriously. The good photoresponse and stability made the Al-doped ZnO nanorod array thin film with hydrogen treatment replace traditional transparent conducting oxide (ITO or FTO) as a novel photoanode to split water and have wide applications in the photoelectrochemical field.
CdS-sensitized AZO nanorod array thin film with hydrogen treatment was fabricated by chemical bath deposition and investigated the effect of various CdS sensitization on their photoelectrochemical (PEC) properties. To enhance the absorption in the visible light region, it was sensitized by CdS nanoparticles which efficiently increased the absorption around 460 nm and reduced the electron-hole recombination of AZO nanorods. It exhibited better PEC property after CdS sensitization. In addition, when CdS nanoparticles formed a monolayer on the surface of AZO nanorods at sensitized cycle number of 3, a maximum short current density of 3.21 mA/cm2 and a maximum hydrogen generation efficiency of 4.15 % were obtained under illumination. The PEC performance of CdS-sensitized AZO nanorod array thin film with hydrogen treatment was comparable and even slightly superior to some earlier works for using FTO、ITO or Ti foil as substrates to grow CdS-sensitized ZnO nanorod array. In addition, we also found that CdS-sensitized AZO nanorod array thin film with hydrogen treatment possessed better photorespons and stability than bare the AZO nanorod array. We further explored the effect of hydrogen treatment and Al-doped on PEC performance at the same CdS sensitization, it displayed higher conductivity of electron transport layer had higher efficiency of hydrogen generation. It was also successfully demonstrated that AZO nanorod array thin film with hydrogen treatment could be used as a photoanode and their PEC performance could be improved by sensitization with quantum dots capable of visible light absorption.
1. 王崇人,科學發展,2002年6月,354期,48-51.
2. 楊乾信,池易楷,楊惇智,科學發展,2005年8月,392期,48-53。
3. Klabunde, K. J. (2001) Introduction to Nanotechnology. In: Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, 1.
4. 李佩雯,郭明庭,科學發展,2010年7月,451期,6-10.
5. 楊智慧,黃耿祥,王英基,林裕城,科學發展,2008年2月,422
期,46-49.
6. 李冠瑢,林政鞍,張恒雄,科學發展,2008年11月,431期,6-9。
7. Donega, C. D. Chem Soc Rev. 40 (3), 2011, 1512-1546.
8. 葉安義,科學發展,2007年10月,418期,42-47.
9. 高逢時,科學發展,2005年2月,386期,66-71.
10. 馬振基,奈米材料科技原理與應用,全華出版社,2004.
11. Grätzel, M. Nature 414, 2001, 338-344.
12. Zhang, J. Z. MRS Bulletin. 36, 2011, 48-55.
13. Li, Y.; Zhang, J. Z. Laser & Photo Rev. 4, 2010, 517-528.
14. Osterloh, F. E.; Parkinson, B. A. MRS Bulletin. 36, 2011, 17-22.
15. Gurney, R. W.; Mott, N. F. Proc. R. Soc. Lond. A 164, 1938, 151-167.
16. Bequerel, E. C.R. Acad. Sci. 9, 1839, 145-149.
17. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T.
S.; Nocera, D. G. Chem. Rev. 110 (11), 2010, 6474-6502.
18. Fujishima, A.; Honda, K. Nature 238, 1972, 37-38.
19. O'Regan, B.; Grätzel, M. Nature 353, 1991, 737-740.
20. Zhang, Q. F.; Cao, G. Z. Nano Today 6 (1), 2011, 91-109.
21. Zhang. Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater. 21 (41), 2009, 4087-4108.
22. Rühle, S.; Shalom, M.; Zaban, A. ChemPhysChem. 11 (11), 2010, 2290-2304.
23. Jose, R.; Thavasi, V.; Ramakrishna, S. J. Am. Ceram. Soc. 92 (2),
2009, 289-301.
24. Sun, J. W.; Zhong, D. K.; Gamelin, D. R. Energy Enviro. Sci. 3 (9),
2010, 1252-1261.
25. Hochbaum, A. I.; Yang, P. D. Chem. Rev. 110 (1), 2010, 527-546.
26. Liu, J.; Cao, G. Z.; Yang, Z.; Wang, D.; , Dubois, D.; Zhou, X.; Graff ,G. L.; Pederson, L. R.; Zhang, J. G. ChemSusChem. 1 (8-9), 2008, 676-697.
27. Ren, S. Q.; Zhao, N.; Crawford, S. C.; Tambe, M.; Bulovic, V.; Gradecak, S. Nano Lett. 11 (2), 2011, 408-413.
28. Zhou, Y. F.; Eck, M.; Kruger, M. Energy Enviro. Sci. 3 (12), 2010, 1851-1864.
29. Zhao, F. H.; Li, X. Y.; Zheng, J. G.; Yang, X. F.; Zhao, F.; Wong, K. S.; Wang, J.; Lin, W.; Wu, M.; Su, Q. Chem. Mater. 20 (4), 2008, 1197-1199.
30. Xu, F.; Dai, M.; Lu, Y.; Sun, L. J. Phys. Chem. C 114 (6), 2010, 2776-2782.
31. Song, X.; Fu, Y. S.; Xie, Y.; Song, J. G.; Wang, H. L.; Sun, J.; Du, X.
W. Semicond. Sci. Technol. 25 (4), 2010, 045031.
32. Joo, J. Y.; Kim, D.; Yun, D. J.; Jun, H.; Rhee, S. W.; Lee, J. S.; Yong K.; Kim, S. J.; Jeon, S. Nanotechnology 21 (32), 2010, 325604.
33. Kuzntsov, V. L.; Edwards P. P. ChemSusChem. 3 (1), 2010, 44-58.
34. 潘漢昌、蕭銘華、蘇健穎、蕭健男,科儀新知 26, 2004, 46-55.
35. 李玉華,科儀新知 12, 1990, 94-102.
36. 楊明輝,透明導電膜,藝軒圖書出版社,2006.
37. 楊明輝,工業材料 179, 1999, 134-144.
38. Beyer, W.; Hupkes, J.; Stiebig, H. Thin Solid Films. 516 (2-4), 2007,
147-154.
39. Müller, J.; Recha, B.; Springer, J.; Vanecek, M. Sol. Energy. 77 (6), 2004, 917-930.
40. Zhao, Z.; Morel, D. L.; Ferekides, C. S. Thin Solid Films.413 (1-2), 2002, 203-211.
41. Noguchi, S.; Sakata, H. J. Phys. D: Appl. Phys. 13, 1980, 1129-1133.
42. Fraser, D. B. ; Cook, H. D. J. Electrochem. Soc. 119, 1972, 1368-1374.
43. Yu, C. F.; Chen, S. H.; Sun, S. J. Chou, H. Appl Surf Sci. 257 (15), 2011, 6498-6502.
44. Chirakkara, S.; Nanda, K. K. ; Krupanidhi, S. B. Thin Solid Films. 519 (11), 2011, 3647-3652.
45. Kumaravel, R.; Ramamurthi, K. J Alloy Compd. 509 (12), 2011,
4390-4393.
46. Clatot, J.; Campet, G.; Zeinert, A.; Labrugère, C.; Rougier, A. Appl Surf Sci. 257 (12), 2011, 5181-5184.
47. Gupta, R.K.; Ghosh, K.; Patel, R.; Kahol, P. K. J Alloy Compd. 509 (10), 2011, 4146-4149.
48. Docampo, P.; Snaith, H. J. Nanotechnology 22 (22), 2011, 225403.
49. Sun, P.; Zhao, W. ; Cao, Y.; Guan, Y.; Sun.; Y. F.; Lu, CrystEngComm. 13 (11), 2011, 3718-3724.
50. Song, H.; Zhang, L.; He, C.; Qu, Y.; Tian, Y. F.; Lv, Y. J. Mater. Chem. 21(16), 2011, 5972-5977.
51. 姜辛、孫超、洪瑞紅、戴逸煌 透明導電氧化物薄膜,高等教育
出版社 (北京),2008.
52. 蔡珣、王振國,功能材料,35, 2004, 76-82.
53. Minami, T. Thin Solid Films. 516 (17), 2008, 5822-5828.
54. Minami, T. MRS Bull. 25 (8), 2000, 38-44.
55. Gordon, R. G. MRS Bull. 25 (8), 2000, 52-57.
56. 劉世忠,產經資訊,63, 2008, 22-27.
57. 楊明輝,工業材料,282, 2010, 158-166.
58. 陳沛霖,光連雙月刊,80, 2009, 21-24.
59. 陳子泰,科學發展專刊,349, 2002, 1-11.
60. 楊素華,蔡泰成,科學發展,2005年6月,390期,50-55.
61. 魯瑞鋒,產經資訊,49, 2007, 35-41.
62. 謝尚潔,楊涵茵,林楷倫,李豐穎,The Chinese Chem. Soc. 65 (4),
2007, 463-474.
63. Oh, S. L.; Choi, K. H.; Im, J. E.; Wang, K. K.; Yaung, H. Y.; Kim, K.;
Kim, Y. R. Nanotechnology 22 (27), 2011, 275309.
64. Nakada, T.; Shirakata, S. Sol. Energ. Mat. Sol. C. 95 (6), 2011,
1463-1470.
65. Fortunato, E.; Ginley, D.; Hosono, H.; Paine, D. C. MRS Bull. 32 (3),
2007, 242-247.
66. 許瑋珉,產經資訊,7, 2003, 35-38.
67. 蔡獻逸,科學發展,2006年10月,406期,32-37。
68. http://140.113.150.4/2011_spring_%E5%85%89%E6%A9%9F%
E9%9B%BB/110105_PIDA_lecture_sheet_chiu.pdf
69. 羅宗吉,薄膜科技與應用(第二版),全華科技圖書股份有限公司, 2005.
70. Hong Xiao,半導體製程技術導論,歐雅書局有限公司,2009.
71. 蔡珣、石玉龍、周建,現代薄膜材料與技術,華東理工大學出版
社, 2007.
72. 董家齊、陳寬任,科學發展,2002年6月,354期,52-59.
73. Peng, X.; Matthews, A.; Xue, S. J. Mater. Sci. 46 (1), 2011, 1-37.
74. Utke, I.; Hoffmann, P.; Melngailis, J. J. Vac. Sci. Technol. B. 26 (4),
2008, 1197-1276.
75. Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A. P.; Gudmundsson, J. T. Thin Solid Films. 513 (1-2), 2006, 1-24.
76. 李世欽、孫承正,科學發展,2008年2月,422期,50-53.
77. Minami, T.; Oohashi, K.; Takata, S. Thin Solid Films. 193 (11), 1990, 720-729.
78. http://php2.twinner.com.tw/files/tyu/GREEN29.pdf.
79. 洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾,The Chinese Chem.
Soc. 63 (3), 2005, 409-418.
80. Koch, R. Surf Coat Tech. 204 (12-13), 2010, 1973-1982.
81. Exarhos, G. J.; Zhou X. D. Thin Solid Films. 515 (18), 2007, 7025-7052.
82. Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. J. Vac. Sci. Technol.
A 8, 1990, 1399-1402.
83. 張以忱,真空鍍膜技術,冶金工業出版社,2009.
84. Shin, S. H. Thin Solid Films. 341 (1-2), 1999, 225-229.
85. 蘇青森,真空技術,東華書局,1999.。
86. 蘇青森,真空技術精華,五南出版社,2004.
87. Schropp, R. E. I.; Stannowski, B.; Brockhoff, A. M.; van Veenendaal, P. A. T. T.; Rath, J. K. Mater. Phys. Mech. 1, 2000, 73-82.
88. Kim, D. H.; Han, Y. G.; Cho, J. S.; and Koh, S. K. Thin Solid Films. 377-378, 2000, 81-86.
89. Igasaki, Y.; Ishikawa, M.; Shimaok, G. Appl Surf Sci. 33-34, 1988, 926-933.
90. Fogler, H. S.; Elements of chemical reaction engineering, 4th ed. Englewood Cliffs, NJ:Prentice-Hall, 2006.
91. 張勁燕,半導體製程設備(第四版),五南出版社,2009.
92. Matsumura, H. Jpn. J. Appl. Phys. 25, 1986, L949-L951.
93. Mahan, A. H.; . Carapella, J.; Nelson, B. P.; Crandall, R. S.; BalbergV, I. J. Appl. Phys. 69, 1991, 6728-6730.
94. Wiesmann, H.; Ghosh, A. K.; McMahon, T.; Strongin M. J. Appl. Phys. 50, 1979, 3752-3754.
95. Doyle, J.; Robertson, R.; Lin, G. H.; He, M. Z.; Gallagher, A. J. Appl. Phys. 64, 1988, 3215-3223.
96. Matsumura, H. J. Appl. Phys. 65, 1989, 4396-4402.
97. 柯賢文,表面與薄膜處理技術(修訂版),全華出版社,2005.
98. 許智雄,氧化鋅奈米粉體之製備與特性分析,國立成功大學化工
所碩士論文,2006.
99. 吳坤陽,溶凝膠法製備含銀之AZO透明導電膜的研究,國立成
功大學化工所碩士論文,2005.
100. Brinker, C. J.; Scherer, G. W. Sol-gel Science: the physics and chemistry of sol-gel processing, Academic Press, Inc (1990).
101. 江松勳,AZO透明導電膜之製備與特性分析,國立成功大學化工所碩士論文,2006.
102. 吳景輝,含銀AZO透明導電膜及AZO@Au奈米粉體之研究,國立成功大學化工所碩士論文,2007.
103. Tsuchiy, T.; Emoto, T.; Sei, T. J. Non-Cryst. Sol. 178, 1994, 327-332.
104. Nogami, M. J. Non-Cryst. Sol. 178, 1994, 320-326.
105. Sol-gel technologies and their products http://www.chemat.com/ CHEMAT Technology, Inc.
106. Sonawane, R. S.; Hegde, S. G.; Dongare, M. K. Mater. Chem. Phys.
77 (3), 2003, 744-750.
107. Li, Q.; Dong, P. J. Colloid Interface Sci. 261 (2), 2003, 325-329.
108. 蔡金津,化工資訊月刊,15, 2001, 16-21.
109. 李岳勳,微/奈米化氧化亞銅之電化學沉積行為及其在鋰離子二次電池之應用,國立成功大學材料科學與工程學系博士論文,2006.
110. 謝德銘、童少平、樓白楊,工業電化學基礎,化學工業出版社,
2009.
111. 黃忠良,基本電化學,復漢出版社印行,2001.
112. Erginsoy, C. Phys. Rev. 104, 1956, 1508-1516.
113. 謝振剛,氧化鋅鋁透明導電膜光、電特性之研究,國立中央大
學光電科學研究所碩士論文,2004.
114. 李玉華,科儀新知,57,1990,94-102。
115. McCluskey, M.D.; Jokela, S. J. J. Appl. Phys.106 (7), 2009, 071101.
116. Ellmer, K. J. Phys. D, Appl. Phys. 34 (21), 2001, 3097-3108.
117. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. J. Appl. Phys. 98 (4), 2005, 041301.
118. Barden, J.; Shockley, E. Phys. Rev. 80, 1950, 72-80.
119. Hutson, A. R. J. Appl. Phys. 32, 1961, 2155-2166.
120. Morris, J. E.; Ridge, M. I.; Bishop, C. A.; Howson, R. P. J. Appl. Phys. 51, 1980, 1847-1849.
121. Ghosh, S.; Sarkar, A.; Chaudhuri, S.; Pal A. K. Thin Solid Films. 205 (1), 1991, 64-68.
122. BELLINGHAM, J. R.; PHILLIPS, W. A.; ADKINS, C. J. J. Phys. Condensed Matter 2 (28), 1990, 6207-6222.
123. WEBB, J. B.; WILLIAMS, D. F.; BUCHANAN, M. Appl. Phys. Lett. 39 (8), 1981, 640-642.
124. Erginsoy, C. Phys. Rev. 79, 1950, 1013-1014.
125. Shigesato, Y.; Paine, D. C.; Haynes T. E. J. Appl. Phys. 73, 1993, 3805-3811.
126. Zhang, D. H.; Ma, H. L. Appl. Phys. A. 62, 1996, 487-492.
127. Bellingham,J. R.; Phillips,W. A.; Adkins, C. J. J. Mater. Sci. Lett., 11(5), 1992, 263-265 .
128. Minami, T.; Sato, H.; Ohashi, K.; Tomofuji, T. Takata, S. J. Cryst. Growth 117 (1-4), 1992, 370-374.
129. Hoel, C. A.; Mason, T. O.; Gaillard, J. F.; Poeppelmeier, K. R. Chem. Mater. 22 (12), 2010, 3569-3579.
130. Klingshirn, C. Phys. Status. Solid. B. 24 (9), 2007, 3027-3073.
131. Granqvist, C. G.; Hultaker, A. Thin Solid Films. 411 (1), 2002, 1-5.
132. Ashcroft, N. W.; Mermin, N. D. Solid state Physics, Saunders Collega Publishing (1976)
133. Fox, M. Optical Properties of Solids, published by Oxford University Press (2001).
134 Chopra, K.L.; Major, S.; Pandya, D. K. Thin Solid Films. 102 (1), 1983, 1-46.
135. Hamberg I.; Granqvist C. G. J. Appl. Phys., 60, 1986, R123-R159.
136. Hamberg I.; Granqvist, C. G. Phys. Rev. B 30, 1984, 3240–3249.
137. Oda, J.; Nomoto, J.; Miyata, T.; Minami, T. Thin Solid Films. 518 (11), 2010, 2984-2987.
138. Rath, J. K.; Liu, Y.; Jong, M. M.; Wild, J.; Schuttauf, J. A.; Brinza, M.; Schropp, R. E. I. Thin Solid Films. 518 (24), 2010, e129-e135.
139. 張智淵,射頻濺鍍沉積氧化鋅鋁透明導電膜之研究,國立中山
大學光電工程學系碩士論文,2008.
140. 林素霞,氧化鋅薄膜的特性改良及應用之研究,國立成功大學材
料科學與工程學系博士論文,2003.
141. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang,
R.; Zhang, Y. Adv. Funct. Mater. 14 (10), 2004, 943-956.
142. Klingshirn, C. ChemPhysChem. 8 (6), 2007, 782-803.
143. Chen J.; Ye, H.; Ae, L.; Tang, Y.; Kieven, D.; Rissom, T.; Neuendorf, J.; Lux-Steiner, M. C. Sol. Energ. Mat. Sol. C. 95 (6), 2011, 1437-1440.
144. Jha, S.; Qian, J. C.; Kutsay, K. J.; Luan, C. Y.; Zapien, J. A.; Zhang, W. J.; Lee, S. T.; Bello, I. Nanotechnology 22 (24), 2011, 245202.
145. Kim, J.; Yong, K. J. Phys. Chem. C. 115 (15), 2011, 7218-7224.
146. Chauhan, M. S.; Kumar, R.; Umar, A.; Chauhan, S.; Kumar, G.; Faisal, M.; Hwang, S. W.;, Al-Hajry, A. J. Nanosci. Nanotechno. 11 (5), 2011, 4061-4066.
147. Yan, Z.; Jiang, L. Y. Nanotechnology 22 (24), 2011, 245703.
148. 透明導電膜之技術,日本學術振興會,透明酸化物光.電子材料第166委員會編輯,Ohmsha發行,1999年,p125。
149. Major, S.; Banerjee, A.; Chopra, K. L. Thin Solid Films. 108 (3), 1983, 333-340.
150. Tang, W.; Cameron, D. C. Thin Solid Films. 238 (1), 1994, 83-87.
151. Brodie, D. E. ; Singh, R.; Morgan, J. H.; Leslie, J. D.; Moore, C. J.; Dixon, A. E. Proc. 14th IEEE Photoviltaic Specialist Conf. 14, 1980, 838.
152. 沈輝,曾祖勤主編/馬振基校訂,太陽能光電技術,五南出版社,2010.
153. 楊德仁編著/顏怡文校訂,太陽能電池材料,五南出版社,2009.
154. 馮垛生/主編,太陽能發電原理與應用,五南出版社,2009.
155. Neamen,Semiconductor Physics and Devices: Basic Principles 4/e,McGraw-Hill。
156. Lianos, P. J. Hazard. Mater. 185 (2-3), 2011, 575-590.
157. Li, B.; Wang, L. D.; Kang, B. N.; Wang, P.; Qiu, Y. Sol Energ Mat Sol C. 90 (5), 2006, 549-573.
158. Pinaud, B. A.; Chen, Z. B.; Abram, D. N.; Jaramillo, T. F. J. Phys. Chem. C. 115 (23), 2011, 11830-11838.
159. Chandra, S. Photoelectrochemical solar cells. New York: Gordon and Breach, 1985. p. 98.
160. Chen, Z.; Jaramillo, T. F. ; Deutsch, T. G.; Shwarsctein, A. K.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, Cl.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. J. Mater. Res. 25 (1), 2010, 3-16.
161. 蔡進譯,物理雙月刊,27(5), 2005, 701-719.
162. Wenham, S. R.; Green, M. A.; Watt, M. E. Applied photovoltaics, Centre for Photovoltaics Devices and Systems, Sydney, 1994. p. 239-246.
163. 胡啟章,電化學原理與方法(第二版),五南出版社,2011.
164 熊楚強,王 月/編著,電化學(修訂版),新文京出版社,1996.
165. 施敏,半導體元件物理與製作技術,高立出版社,2007.
166. 李嗣涔,管傑雄,孫台平,半導體元件物理,三民書局股份有
限公司,2005.
167. Norio Sato,Electrochemistry at Metal and Semiconductor
Electrodes,Elsevier Science,1998.10.
168. McConnell, I.; Li, G. H.; Brudvig, G. W. Chemistry & Biology. 17 (5), 2010, 434-447.
169. Stuart L.; Gary, H.; Reshef T.; Joost, M. Nature 326, 1987, 863-864.
170. Alexander, B. D.; Kulesza, P. J.; Rutkowska, I.; Solarska, R.; Augustynski, J. J. Mater. Chem. 18 (20), 2008, 2298-2303.
171. Krol, R. V.; Liang, Y.; Schoonman, J. J. Mater. Chem. 18 (20), 2008, 2311-2320.
172. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 42 (12), 2009, 1890-1898.
173. Hamann, T. W.; Jensen, R. A.; Martinson, A. B. F.; Van, R. H.; Hupp, J. T. Energy Enviro. Sci. 1 (1), 2008, 66-78.
174. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal. Today 139 (4), 2009, 244-260.
175. Bak, T.; Nowotny J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy. 27 (10), 2002, 991-1022.
176. Nah, Y. C.; Paramasivam, I.; Schmuki, P. ChemPhysChem. 11 (13), 2010, 2698-2713.
177. Gonzalez,V. I.; Lira, C. M. Energy Enviro. Sci. 2 (2), 2009, 19-34.
178. Lang, Y. Z.; Arnepalli, R. R.; Tiwari, A. J Nanosci Nanotechno. 11 (5), 2011, 3719-3739.
179. Lai, Y. K.; Huang, J. Y.; Zhang, H. F.; Subramaniam, V. P.; Tang, Y. X.; Gong, D. G.; Sundar, L.;, Suna, L.; Chen, Z.; Lin, C. J. J. Hazard. Mater. 184 (1-3), 2010, 855-863.
180. Mohamed, A. E.; Rohani, S. Energy Enviro. Sci. 4 (4), 2011, 1065-1086.
181. Chi, C. F.; Lee, Y. L.; Weng, H. S. Nanotechnology 19 (12), 2008, 125704.
182. Chi, C. F.; Liau, S. Y.; Lee, Y. L. Nanotechnology 21 (2), 2010, 025202.
183. Nagasuna, K.; Akita, T.; Fujishima, M.; Tada, H. Langmuir 27 (11), 2011, 7294-7300.
184. Ratanatawanate, C.; Chyao, A.; Balkus, K. J. J. Am. Chem. Soc. 133 (10), 2011, 3492-3497.
185. Sunkara, M. K.; Pendyala, C.; Cummins, D.; Meduri, P.; Jasinski, J.; Kumar, V.; Russell, H. B.; Clark, E. L.; Kim, J. H. J. Phys. D: Appl. Phys 44 (17), 2011, 174032.
186. Wang, D. A.; Ye, Q. A.; Yu, B.; Zhou, F. J. Mater. Chem. 20 (33), 2010, 6910-6915.
187. Wang, D. A.; Hu, T. C.; Hu, L. T.; Yu, B.; Xia, Y. Q.; Zhou, F.; Liu, W. M. Adv. Funct. Mater. 19 (12), 2009, 1930-1938.
188. Dai, G. P.; Yu, J. G.; Liu, G. J. Phys. Chem. C 115 (15), 2011, 7339–7346.
189. Lin, Y. J.; Yuan, G.; Liu, R.; Zhou, S.; Sheehan, S. W.; Wang, D. Chem. Phys. Lett. 507 (4-6), 2011, 209-215.
190. Kamat, P. V. J. Phys. Chem. C 112 (48), 2008, 18737–18753.
191. Li, B. X.; Wang, Y. F. J. Phys. Chem. C 114 (2), 2010, 890–896.
192. Zhu, H.; Hupkes, J.; Bunte, E.; Owen, J.; Huang, S. M. Sol. Energy Mater. Sol. Cells. 95 (3), 2011, 964-968.
193. Liao, M. H.; Hsu, C. H.; Chen, D. H. J Solid State Chem. 179 (7), 2006, 2020-2026.
194. Yu, J. X.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Wang, Z. Y.; Liu, H. X. Appl Surf Sci. 257 (13), 2011, 5563-5565.
195. Pawar, R. C.; Shaikh, J. S.; Babar, A. A.; Dhere, P. M.; Patil, P. S. Sol. Energy. 85 (5), 2011, 1119-1127.
196. Lin, C. J.; Chen, S. Y.; Liou, Y. H. Electrochem. Commun. 12 (11), 2010, 1513-1516.
197. Yuan, B.; Zheng, X. J.; Chen, Y. Q.; Yang, B.; Zhang, T. Solid-State Electron. 55 (1), 2011, 49-53.
198. Tang, D. M.; Liu, G.; Li, F.; Tan, J.; Liu, C.; Lu, G. Q.; Cheng, H. M. J. Phys. Chem. C. 113 (25), 2009, 11035-11040.
199. Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 9 (6), 2009, 2331-2336.
200. Shet, S.; Ahn, K. S.; Deutsch, T.; Wang, H. L.; Nuggehalli, R.; Yan, Y. F.; Turner, J.; Al-Jassim, M. J. Power Sources. 195 (17), 2010, 5801-5805.
201. Wang, G. M.; Yang, X.; Qian, F.; Zhang, Z. Li, Y. Nano Lett. 10 (3), 2010, 1088-1092.
202. Ahn, K. S.; Yan, Y. F.; Lee, S. H.; Deutsch, T.; Turner, J.; Tracy, C. E.; Perkins, C. L.; Al-Jassim, M. J. Electrochem. Soc. 154 (9), 2007, B956-B959.
203. Zhang, Q. F.; Chou, T. R.; Russo, B.; Jenekhe, S. A.; Cao, G. Z. Angew. Chem. Int. Ed. 47 (13), 2008, 2402-2406.
204. Deng, J.; Zheng, Y. Z.; Hou, Q.; Chen, J. F.; Zhou, W. L.; Tao, X. Electrochim. Acta. 56 (11), 2011, 4176-4180.
205. Zhao, X. H.; Wang, P.; Li, B. J. Chem. Commun. 46 (36), 2010, 6768-6770.
206. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin,V.; Cho, S. J.; Morkoc, H. J. Appl. Phys. 98, 2005, 041301.
207. Dohrmann, J. K.; Chuan, M.; Schaaf, N. S. Sol. Energy Mater. Sol. Cells. 43 (3), 1996, 273-296.
208. Pandey, R. N.; Babu, K. S. C.; Srivastava, O. N. Prog. Surf. Sci. 52 (3), 1996, 125-192.
209. Greene, L. E., Yuhas, B. D., Law, M., Zitoun, D.; Yang, P. Inorg. Chem. 45(19), 2006, 7535-7543.
210. Viswanatha, R., Sapra, S., Gupta, S. S., Satpati, B., Satyam, P. V., Dev, B. N.; Sarma, D. D. J. Phys. Chem. B. 108(20), 2004, 6303-6310.
211. Tang, W.; Cameron, D. C. Thin Solid Films 238(1), 1994, 83-87.
212. Wu, D., Huang, Z., Yin, G., Yao, Y., Liao, X., Han, D., Huang, X.; Gu, J. Cryst. Eng. Comm. 12(1), 2010, 192-198.
213. Ruske, F., Roczen, M., Lee, K., Wimmer, M., Gall, S., Hüpkes, J., Hrunski, D.; Rech, B. J. Appl. Phys. 107, 2010, 013708.
214. Trolio, A. D., Bauer, E. M., Scavia, G.; Veroli, C. J. Appl. Phys. 105, 2009, 113109.
215. Park, S. M., Ikegami, T.; Ebihara, K. Thin Solid Films 513(1-2), 2006, 90-94.
216. Sun, Y., Riley, J.; Michael, N. R. J. Phys. Chem. B. 110(31), 2006, 15186-15192.
217. Wei, D.; Amaratunga, G. Int. J. Electrochem. Sci., 2, 2007, 897-912.
218. Bakker, E., Anal. Chem. 76 (12), 2004, 3285-3298.
219. Hsu, C. H; Chen, D. H. Nanotechnology 21 (28), 2010, 285603.
220. Shet, S. H., Ahn, K. S., Deutsch, T., Wang, H., Nuggehalli, R., Yana, Y., Turnera, J.; Jassim, M. A. J Power Sources 195(17), 2010, 5801−5805.
221. Ahn, K. S., Shet, S. H., Deutsch, T., Jiang, C. S., Yan, Y., Jassim, M. A.; Turner, J. J Power Sources 176(1), 2008, 387−392.
222. Shet, S. H., Ahn, K. S., Nuggehalli, R., Yan, Y., Turner. J.; Jassim M. A. JOM 62, 2010, 25−30.
223. Zhang, H. J., Chen, G. H.; Bahenmann, D. W. J. Mater. Chem., 19(29), 2009, 5089-5121.
224. Sartbaeva, A., Kuznetsov, V. L., Wells, S. A.; Edwards, P. P. Energy Environ. Sci., 1(1), 2008, 79-85.
225. Pagliaro, M., Konstandopoulos, A. G., Ciriminna, R.; and Palmisano, G. Energy Environ. Sci., 3(3), 2010, 279-287.
226. Sun, J. Zhong, D. K.; Gamelin, D. R. Energy Environ. Sci., 3(9), 2010, 1252-1261.
227. Frank, E. O.; Parkinson, B. A. MRS Bulletin, 36, 2011, 17-22.
228. Kim, J.H., Yun, T. K., Bae1, J. Y.; Ahn, K. S. Jpn J Appl Phys 48, 2009, 120204.
229. Li, Y, Valle, F. D., Simonnet, M., Yamada, I.; Delaunay, J. J. Nanotechnology 20(4), 2009, 045501.
230. Sathish, M.; Viswanath, R. P., Catal. Today., 129(3-4), 2007, 421-427.
231. Patida, D., Rathore, K. S., Saxena, N. S., Sharma, K.; Sharma, T. P. J. Nano. Res., 3, 2008, 97-102.
232. Wang, G., Yang, X., Qian, F., Zhang, J. Z.; Li, Y. Nano Lett., 10(3), 2010, 1088-1092.
233. Tak, Y., Hong, S. J., Lee, J. S.; Yong, K. Cryst. Growth Des., 9(6), 2009, 2627-2632.
234. Shengyuan, Y., Nair, A. S., Jose, R.; Ramakrishna S., Energy Environ. Sci., 3(12), 2010, 2010-2014.
235. Yu, W. W., Qu, L., Guo, W.; Peng, X. Chem. Mater., 15(14), 2003, 2854-2860.
236. Shan, F. K., Liu, G. X., Lee, W. J., Lee, G. H., Kim, I. S.; Shinb, B. C. Appl. Phys. Lett., 86, 2005, 221910.
237. Cuia J. ,B.; Thomas, M. A. J. Appl. Phys., 106, 2009, 033518.
238. Zhang, Q. B., Feng, Z. F., Han, N. N., Lin, L. L., Zhou, J. Z.; Lin, Z. H. Acta Phys. Chim. Sin., 26(11), 2010, 2927-2934.
239. Tak, Y., Hong, S. H., Lee, J. S.; Yong, K. J. Mater. Chem., 19(33), 2009, 5945-5951.
240. Paulose, M., Shankar, K. O., Varghese, K., Mor, G. K., Hardin, B.; Grimes, C. A. Nanotechnology, 17(5), 2006, 1446-1448.
241. Lin, S. C., Lee, Y. L., Chang, C. H., Shen, Y. J.; Yang, Y. M. Appl. Phys. Lett., 90, 2007, 143517.
242. Zhang, Y., Xie, T. F., Jiang, T. F., Wei, X., Pang, S., Wang, X.; Wang, D. Nanotechnology, 20(15), 2009, 155707.
243. Tang, J.; Sargent E. H. Adv. Mater. 23 (1), 2011, 12-29.