| 研究生: |
衛彤軒 Wei, Tong-Xuan |
|---|---|
| 論文名稱: |
基於量子資訊理論之密碼學安全分析 Security Analysis on Quantum Cryptographic Protocols Based on Quantum Information Theory |
| 指導教授: |
黃宗立
Hwang, Tzonelih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 量子密碼學 、資訊理論 |
| 外文關鍵詞: | Quantum cryptography, Information theory |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於量子資訊科學的發展一日千里,近代密碼學在安全上開始備感威脅。因此,新一代的量子密碼學也就成為現今密碼學家的主要研究方向。遂各密碼學家相繼提出各式各樣的量子密碼學應用協定。例如,量子金鑰分配 (Quantum key distribution) 和量子安全通訊 (Quantum secure communication) …等等。然而,對於各種協定的安全性尚未有一適當的證明方法。在大部分的研究中,均是利用舉例的方式來證明其安全性,但這樣的方式卻往往會忽略一些暗藏的漏洞。
不同於傳統密碼學基於計算安全的特性,量子密碼學是植基於量子的物理特性來達到理論安全,所以資訊理論是相當適合用於分析量子密碼協定的安全性。但量子密碼協定中使用的並非是傳統位元,而是量子位元 (Qubit),因此並不適用於傳統資訊理論。為了解決此問題,物理學家提出針對量子位元的量子資訊理論,用於分析量子位元的資訊量。然而,大部分的量子密碼協定中,除了傳遞量子位元以外,也可能會傳遞傳統位元,且傳統位元與量子位元之間存在著某種關聯,單獨使用任一種資訊理論來分析皆不恰當。故本論文將設計一個可同時考慮量子位元與傳統位元的方法。此外,也針對資訊洩漏 (Information leakage) 與逐位元攻擊 (Bit-by-bit attack) 兩種攻擊方法加以分析,利用此方法足以深掘協定其中潛藏之漏洞。
Recently, due to the development of quantum information science, modern cryptography is threatened. Thus, quantum cryptography, the next generation of cryptography, has become a popular research topic. A variety of quantum cryptography application protocols have been proposed. For example, quantum key distribution (QKD), quantum secure direct communication (QSDC) and others. However, there is no formal method to prove the secu-rity of these quantum cryptographic protocols. Most researchers analyze the security by testing some attacks, but this method ignores some unobvious flaws.
In contrast to classical cryptography, quantum cryptography is based on unconditional security (or theoretical security) instead of computational security. Therefore, information theory can be used to prove its theoretical security. However, in the quantum cryptographic protocol, both the quantum bit (qubit) and classical bit are used. Therefore, classical infor-mation theory does not apply to qubits. Also, the relationship between quantum bits and classical bits should be considered. Fortunately, physicists introduced the quantum infor-mation theory to measure the information of qubits. However, there still exists the problem of measuring the dependence of a qubit and a classical bit.
For the reason mentioned above, this thesis proposes a method that simultaneously considers both quantum information and classical information. In addition, this thesis ana-lyzes the proposed method using two kinds of attacks, (a) information leakage and (b) bit-by-bit attack. By using this method, it is much easier to identify some unobvious flaws.
[1] F. Gao, S. J. Qin, F. Z. Guo and Q. Y. Wen, “Cryptanalysis of Quantum Secure Direct Communication and Authentication Scheme via Bell States,” Chinese Physics Letters, vol. 28, p. 020303, 2011.
[2] J. Yang, C. Wang and R. Zhang, “Quantum Secure Direct Communication with Authenti-cation Expansion Using Single Photons,” Communications in Theoretical Physics, vol. 54, p. 829, 2010.
[3] L. Dan, P. Chang-Xing, Q. Dong-Xiao and Z. Nan, “A New Quantum Secure Direct Communication Scheme with Authentication,” Chinese Physics Letters, vol. 27, no. 5, p.050306, 2010.
[4] C.-A. Yen, S.-J. Horng, H. S. Goan, T.-W. Kao and Y.-H. Chou, “QUANTUM DIRECT COMMUNICATION WITH MUTUAL AUTHENTICATION,” Quantum Information and Computation, vol. 9, no. 5-6 , pp. 376-394, 2009.
[5] T.-Y. Wang, Q.-Y. Wen, and F.-C. Zhu, “Secure authentication of classical messages with decoherence-free states,” Optics Communications, vol. 282, no. 16, pp. 3382-3385, 2009.
[6] T.-Y. Wang, Q.-Y. Wen and F.-C. Zhu, “Secure authentication of classical messages with single photons,” Chinese Physics B, vol. 18, no. 8, pp. 3189-3192, 2009.
[7] Y. Kanamori, S. M. Yoo, D. A. Gregory and F. T. Sheldon, “Authentication protocol using quantum superposition states,” International Journal of Network Security, vol. 9, no. 2, pp. 101-108, 2009.
[8] F. Assis, P. Mateus and Y. Omar, “Quantum Authentication of Classical Messages with Perfect Security,” Arxiv preprint arXiv:0806.1231, 2008.
[9] Z.-J. Zhang, J. Liu, D. Wang and S.-H. Shi, “Comment on “Quantum direct communica-tion with authentication”,” Physical Review A, vol.75, no. 2, p. 026301, 2007.
[10] Y. Yu-Guang, W. Qiao-Yan and Z. Fu-Chen, “An efficient quantum secure direct commu-nication scheme with authentication,” Chinese Physics, vol. 16, no. 7, p. 1838, 2007.
[11] W. j. Liu, H.-w. Chen, Z.-g. Li, Z.-h. Liu and F.-y. Xiao, “Efficient quantum direct com-munication with authentication,” Sch. of Comput. Sci. & Eng., Southeast Univ., Nanjing, no. 1-6, pp. 1764-1768, 2008.
[12] Z. Zhang, G. Zeng, N. Zhou and J. Xiong, “Quantum identity authentication based on ping-pong technique for photons,” Physics Letters A, vol. 356, no. 3, pp. 199-205, 2006.
[13] H. Lee, J. Lim and H. Yang, “Quantum direct communication with authentication,” Physi-cal Review A, vol. 73, no. 4, p. 042305, 2006.
[14] W. Jian, Z. Quan, and Chao-Jing T., “Multiparty simultaneous quantum identity authenti-cation based on entanglement swapping,” Chinese Physics Letters, vol. 23, no. 9, p. 2360-2363, 2006.
[15] F. G. Deng, G. L. Long and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Physical Review A, vol. 68, no. 4, p. 42317, 2003.
[16] H. Ollivier and W. Zurek, “Quantum discord: A measure of the quantumness of correla-tions,” Physical Review Letters, vol. 88, no. 1, 2002.
[17] B. Shi, J. Li, J. Liu, X. Fan and G. Guo, “Quantum key distribution and quantum authenti-cation based on entangled state,” Physics Letters A, vol. 281, no. 2-3, pp. 83-87, 2001.
[18] M. Curty and D. Santos, “Quantum authentication of classical messages,” Physical Review A, vol. 64, no. 6. 2001.
[19] P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribu-tion Protocol,” Physical Review Letters, vol. 85, no. 2, pp. 441-444, 2000.
[20] D. Gottesman and H. Lo, “From quantum cheating to quantum security,” Physics Today, vol. 53, no. 11, pp. 22-27, 2000.
[21] C. H. Bennett, G. Brassard, C. Crepeau and U. M. Maurer, “Generalized privacy amplifica-tion,” Information Theory, IEEE Transactions on, vol. 41, no. 6, pp. 1915-1923, 1995.
[22] C. H. Bennett, G. Brassard and J. M. Robert, “Privacy amplification by public discussion,” SIAM journal on Computing, vol. 17, p. 210, 1988.
[23] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, p. 175, 1984.
[24] E. Biham, M. Boyer, P. O. Boykin, T. Mor and V. Roychowdhury, “A Proof of the Securi-ty of Quantum Key Distribution,” Journal of cryptology 19, pp. 381-439, 2006.
[25] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” IEEE., 1994.
[26] C. E. Shannon, “A mathematical theory of communication Bell Syst,” tech. J, vol. 27, no. 379, p. 623, 1948.
[27] M. B. Plenio, “The Holevo bound and Landauer's principle,” Physics Letters A, vol. 263, no. 4-6, pp. 281-284. 1999.
[28] B. A. Nguyen, “Quantum dialogue,” Physics Letters A, vol. 328, no. 1, pp. 6-10, 2004.
[29] Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon and C. I. Um, “Quantum dialogue by using the GHZ state,” Arxiv preprint quant-ph/0601127, 2006.
[30] Z. X. Man, Z. J. Zhang and Y. Li, “Quantum dialogue revisited,” Chinese Physics Letters, vol. 22, pp. 22-24, 2005.
[31] F. Gao, F. Guo, Q. Wen and F. C. Zhu, “Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication,” Science in China Series G: Physics Mechanics and Astronomy, vol. 51, no. 5, pp. 559-566, 2008.
[32] J. Xin and Z. Shou, “Secure quantum dialogue based on single-photon,” Chinese Physics, vol. 15, pp. 1418, 2006.
校內:2021-12-31公開