簡易檢索 / 詳目顯示

研究生: 劉祐禎
Liu, Yu-Chen
論文名稱: 利用馬來蝮蛇蛇毒蛋白突變株研究在辨識組合蛋白αvβ3 和α5β1 的結構決定要素
Structural Determinants of Integrins αvβ3 and α5β1 Recognition by Rhodostomin Mutants
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 77
中文關鍵詞: 去組合蛋白組合蛋白動力學核磁共振結構
外文關鍵詞: integrin, disintegrin, NMR structure, dynamics
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   組合蛋白(integrins)是一群位於細胞表面上的膜蛋白,它們的功能參與細胞之間的粘合、細胞的遷移以及訊息的傳遞等等。而組合蛋白牽涉到許多疾病的發生,所以它們也被視為具有潛力發展藥物設計的目標物。有些細胞之間的結合是藉由RGD(Arg-Gly-Asp)的序列,像細胞外間質細胞、血液細胞等,而且有許多的組合蛋白都可辨認RGD的序列。也有很多研究發現,在蛇毒中的去組合蛋白(disintegrins)其RGD周圍的胺基酸序列會去影響到它們和組合蛋白結合的特異性。Rhodostomin (Rho)是個有效抑制組合蛋白的去組合蛋白,在胺基酸48-53的位置是PRGDMP的序列。藉由細胞粘合分析的結果,我們發現ARGDGP和PRGDGP這兩個突變株會選擇性去抑制組合蛋白<font face="symbol">a</font>v<font face="symbol">b</font>3,另外,在RGD周圍序列是ARGDXP的突變株其對於組合蛋白<font face="symbol">a</font>5<font face="symbol">b</font>1有比較好的抑制效果。為了要探討組合蛋白<font face="symbol">a</font>v<font face="symbol">b</font>3和<font face="symbol">a</font>5<font face="symbol">b</font>1在辨認不同序列的結構決定要素,我們利用核磁共振光譜(NMR)的方法,決定出這些對於組合蛋白<font face="symbol">a</font>v<font face="symbol">b</font>3和<font face="symbol">a</font>5<font face="symbol">b</font>1特異性結合突變株的3D立體結構(ARGDMP、ARGDNP、ARGDGP和PRGDGP)。由我們結構上的分析,野生株PRGDMP和這些突變株的3D立體結構是一樣的;然而在ARGDGP和PRGDGP突變株中,RGD loop骨架的構形以及D51胺基酸側鏈的位向和野生株是不同的,它們的結構和我們之前發現一個對於組合蛋白<font face="symbol">a</font>v<font face="symbol">b</font>3特異性結合的突變株ARGDDL是相似的,所以我們認為在RGD loop構形上的不同,對於會選擇性去抑制組合蛋白<font face="symbol">a</font>v<font face="symbol">b</font>3是扮演一個重要的角色。另外由PRGDMP和ARGDMP的Model free動力學分析,發現把胺基酸P48突變成A48時,胺基酸R49的次序參數(S<sup>2</sup>)值是比較小的,這是源自於R<sub>2</sub>值降低的結果,而含ARGDXP序列的突變蛋白對於組合蛋白<font face="symbol">a</font>5<font face="symbol">b</font>1有較好的抑制效果,在動力學性質上的不同似乎是一個重要的因素。還有我們也利用同源模擬法(homology modeling),以組合蛋白<font face="symbol">a</font>v<font face="symbol">b</font>3的3D立體結構當模板(template),製作出組合蛋白<font face="symbol">a</font>IIb<font face="symbol">b</font>3和<font face="symbol">a</font>5<font face="symbol">b</font>1的模型結構,而將對於不同組合蛋白<font face="symbol">a</font>IIb<font face="symbol">b</font>3、<font face="symbol">a</font>v<font face="symbol">b</font>3以及<font face="symbol">a</font>5<font face="symbol">b</font>1特異性結合的Rho突變株分別對接(docking)到組合蛋白中,進而想去鑑定出它們之間可能互相作用的胺基酸。由我們研究的結果可知道,去組合蛋白其RGD周圍的序列會去影響到它們的結構、動力學性質和功能,這樣的結果可幫助我們去設計有效抑制組合蛋白<font face="symbol">a</font>IIb<font face="symbol">b</font>3、<font face="symbol">a</font>v<font face="symbol">b</font>3以及<font face="symbol">a</font>5<font face="symbol">b</font>1的抑制物。

      Integrins are a family of cell surface receptors that mediate cell cellular adhesion, cell migration and signal transduction. It is known that integrins play important roles in the initiation and progression of many common diseases. Therefore, antagonism of integrins provides an approach for the treatment and prevention of these diseases. The RGD sequence is the cell attachment site of a large number of adhesive ECM, blood, and cell surface proteins and nearly half of 24 known integrins recognize this sequence in their adhesive ligands. Many studies have showed that the amino acid residues flanking the RGD motif of snake venom disintegrins control their binding specificity. Rhodostomin (Rho) is a potent integrin inhibitor and contains a PRGDMP sequence at positions of 48-53. Based on our results of cell adhesion analyses, we found that Rho mutants containing either ARGDGP or PRGDGP sequence can selectively inhibit integrin <font face="symbol">a</font>v<font face="symbol">b</font>3 and Rho mutants containing ARGDXP sequence in the RGD loop have better inhibitory activity to integrin <font face="symbol">a</font>5<font face="symbol">b</font>1. To understand structural determinants of integrins <font face="symbol">a</font>v<font face="symbol">b</font>3 and <font face="symbol">a</font>5<font face="symbol">b</font>1 recognition, we have determined 3D structures of these mutant proteins (ARGDMP, ARGDNP, ARGDGP and PRGDGP) by using NMR spectroscopy. Based on our structural analyses, the tertiary folds of wild-type and mutant proteins are the same. However, the backbone conformation of the RGD loop and the side-chain orientation of the D51 residue of mutant proteins (ARGDGP and PRGDGP) differ from those of wild-type Rho. Their structures are similar to our reported structure of the ARGDDL mutant, an integrin <font face="symbol">a</font>v<font face="symbol">b</font>3-specific protein. These results suggest that these conformational differences may be responsible for their inhibitory selectivity to integrin <font face="symbol">a</font>v<font face="symbol">b</font>3. In addition, model-free analyses of PRGDMP and ARGDMP proteins reveal that mutation of P48 to A caused a decrease in the order parameter (S<sup>2</sup>) of the R49 residue of the ARGDMP protein, mainly due to the decrease of R<sub>2</sub>. This difference may be responsible for the better inhibitory activity of Rho mutants containing ARGDXP sequence to integrin <font face="symbol">a</font>5<font face="symbol">b</font>1. Using 3D structure of <font face="symbol">a</font>v<font face="symbol">b</font>3 integrin as template, 3D model structures of integrins <font face="symbol">a</font>IIb<font face="symbol">b</font>3 and <font face="symbol">a</font>5<font face="symbol">b</font>1 were generated by using homology modeling. Docking integrins <font face="symbol">a</font>IIb<font face="symbol">b</font>3, <font face="symbol">a</font>v<font face="symbol">b</font>3, and <font face="symbol">a</font>5<font face="symbol">b</font>1-specific Rho mutants to their receptors will be used to identify their possible interacting amino acids. Our findings suggest that the residues flanking the RGD motif of disintegrins regulate their structure, dynamics and function. These results will be used to design potent integrins <font face="symbol">a</font>IIb<font face="symbol">b</font>3, <font face="symbol">a</font>v<font face="symbol">b</font>3, and <font face="symbol">a</font>5<font face="symbol">b</font>1-specific antagonists.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 縮寫檢索表 XI 儀器 XII 第一章 緒論 1-1 組合蛋白(integrin)之介紹 1 1-2 去組合蛋白(disintegrin)之介紹 2 1-3 馬來蝮蛇去組合蛋白(Rhodostomin)之介紹 4 1-4 核磁共振(NMR)決定蛋白質三維結構與動力學之介紹 5 1-5 論文研究動機與目標 6 第二章 材料與方法 2-1 Rhodostomin突變蛋白的誘發 8 2-2 NMR樣品製備與光譜之測定 15 2-3 以NMR研究Rhodostomin突變蛋白之三維結構 2-3-1原理 16 2-3-2 NMR光譜之判定 16 2-3-3限制條件的找尋 18 2-3-4 計算蛋白分子的三度空間結構 20 2-4 以NMR研究Rhodostomin與其突變蛋白之骨架動態行為 2-4-1 15N弛緩速率的測量 24 2-4-2 Model free 計算 25 2-4-3利用tensor2軟體計算蛋白質骨架Model free 動力參數 25 2-5 利用同源模擬法(Homology modeling)以及對接(Docking)方法 研究組合蛋白與去組合蛋白之間的作用 2-5-1利用ExPASy中的SWISS-MODEL作homology modeling 27 2-5-2利用FTDock軟體將Rho突變蛋白dock到組合蛋白中 27 第三章 實驗結果 3-1 Rhodostomin突變蛋白之NMR圖譜分析 29 3-2 Rhodostomin突變蛋白三維結構運算與結構之比較 32 3-3 Rhodostomin與其突變蛋白骨架動力學之分析 33 3-4利用homology modeling和docking探討組合蛋白和Rho突變株 可能互相作用的胺基酸 35 第四章 討論 4-1 Rhodostomin與其突變蛋白生物活性功能與結構變化之探討 36 4-2 Rhodostomin與其突變蛋白生物活性功能與蛋白質動力學之探討 37 第五章 結論 40 參考文獻 41 表 46 圖 54 自述 77

    Adler, M., Lazarus, R.A., Dennis, M.S. & Wagner, G.. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 253, 445-448 (1991)

    Arnaout, M.A.. Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol Rev. 114, 145-180 (1990)

    Brunger, A.T. X-PLOR Version 3.1: A system for X-ray crystallography and NMR. New Haven, CT: Yale University Press (1992)

    Carr, P.A. Erickson, P.H. & Palmer, A.G. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure 5, 949–959 (1997)

    Chang, H.H., Hu, S.T., Huang, T.F., Chen, S.H., Lee, Y.H. & Lo, S.J. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochemical & Biophysical Research Communications 190, 242-249 (1993)

    Chen, Y., Suri, A.K., Kominons, D., Sanyal, G., Naylor, A.M., Pitzenberger, S.M., Garsky, V.M., Levy, R.M. & Baum, J. Three-dimensional structure of echistatin and dynamics of the active site. J Biomol NMR. 4, 307-324 (1994)

    Cordier, F., Caffrey, M., Brutscher, B., Cusanovich, M.A., Marion, D. & Blackledge, M. Solution structure, rotational diffusion anisotropy and local backbone dynamics of Rhodobacter capsulatus cytochrome c2. J Mol Biol 281, 341-361 (1998)

    Erkki, R. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697-715 (1996)

    Feuston BP, Culberson JC & Hartman GD. Molecular model of the alpha(IIb)beta(3) integrin. J Med Chem. 46, 5316-5325 (2003)

    Fujii Y, Okuda D, Fujimoto Z, Horii K, Morita T & Mizuno H. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J Mol Biol. 332, 1115-1122 (2003)

    Gottschalk KE & Kessler H. The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. Angew Chem Int Ed Engl. 41,3767-3774 (2002)

    Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J. & Niewiarowski S. Disintegrins : A family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol 195, 168-171 (1990)

    Guo, R.T., Chou, L.J., Chen, Y.C., Chen, C.Y., Pari, K., Jen, C.J., Lo, S.J., Huang, S.L., Lee, C.Y., Chang, T.W. & Chuang, W.J. Expression in Pichia pastoris and Characterization by Circular Dichroism and NMR of Rhodostomin. Proteins. 43, 499-508 (2001)

    Huang, T.F., Sheu, J.R., Teng, C.M., Chen, S.W. & Liu, C.S. Triflavin, an antiplatelet Arg-Gly-Asp-containing peptide, is a specific antagonist of platelet membrane glycoprotein IIb-IIIa complex. Journal of Biochemistry 109, 328-334. (1991)

    Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992)

    Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687 (2002)

    Ishima, R. & Torchia, D.A. Protein dynamics from NMR. Nat Struct Biol 7,740-743 (2000)

    Juliano, D., Wang Y., Marcinkiewicz C., Rosenthal L.A., Stewart G.J. & Niewiaroswki S. Disintegrin interaction with alpha V beta 3 integrin on human umbilical vein endothelial cells: expression of ligand-induced binding site on beta 3 subunit. Exp Cell Res 225, 132-142. (1996)

    Leahy, D.J., Aukhil, I. & Erickson, H.P. 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155-164. (1996)

    Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559. (1982)

    Marcinkiewicz, C., Calvete, J.J. & Niewiarowski, S. Isolation and characterization of two novel dimeric disintegrins: EC-3 and EMF-10 inhibiting interaction of lymphoid cells with VCAM-1. Blood 90, 59b. (1999)

    McLane, M.A., Vijay-Kumar, S., Marcinkiewicz, C., Calvete, J.J. & Niewiarowski, S. Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of alpha IIb beta 3 and alpha v beta 3 integrins. FEBS Lett. 391, 139-143. (1996)

    Niewiarowski, S., McLane, M.A., Kloczewiak, M. & Stewart, G.J. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol. 31, 289-300 (1994)

    Pfaff, M., McLane, M.A., Beviglia, L., Niewiarowski, S. & Timpl, R. Comparison of Disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell Adhes Commun 2, 491-501. (1994)

    Rahman S, Aitken A, Flynn G, Formstone C & Savidge GF. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J. 335, 247-257 (1998)

    Rouslahti, E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12, 697-715. (1996)

    Saudek, V., Atkinson, R.A. & Pelton, J.T. Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 30, 7369-7372. (1991)

    Scarborough, R.M., Rose, J.W., Hsu, M.A., Philips, D.R., Fried, V.A., Campbell, A.M., Nannizzi, L. & Charo, I.F. Barbourin:A GPIIb-IIIa-specific integrin anatagonist from the venom of Sistrurus m. barbouri. J Biol Chem 266, 9359-9362, (1991)

    Senn, H. & Klaus, W. The Nuclear Magnetic Resonance Solution Structure of Flavoridin, an Antagonist of the Platelet GP IIb-IIIa Receptor. J. Mol. Biol. 232, 907-925 (1993)

    Shimaoka, M., Takagi, J. & Springer, T.A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516. (2002)

    Shin J, Hong SY, Chung K, Kang I, Jang Y, Kim DS & Lee W. Solution structure of a novel disintegrin, salmosin, from Agkistrondon halys venom. Biochemistry 42, 14408-14415 (2003)

    Tcheng J.E., Harrington R.A., Kottke M.K., Kleinman N., Ellis S.G., Kereiakes D.J., Mick M.J., Navetta F.I., Smith J.E., Worley S.J., Miller J.A., Joseph D.M., Sigmon K.N., Kitt M.M., Califf R.M. & Topol E.J. Multicenter , randomized, double-blind, placebo-controlled trial of the platelet integrin glycoprotein IIb/IIIa blocker integrin in elective coronary intervention. Circulation 91, 2151-2157. (1995)

    Trikha M., De Clerck Y.A. & Markland F.S. Contortrostatin, a snake venom disintegrin, inhibits beta 1 integrin-meditated human metastatic melanoma cell adhesion and blocks experimental metastasis. Cancer Research 54, 4993-4998. (1994)

    Wierzbicka-Patynowski, I., Niewiarowski, S., Marcinkiewicz, C., Calvete, J.J. Marcinkiewicz, M.M. & McLane, M.A. Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem 274, 37809-37814 (1999)

    Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., & Arnaout, M.A. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155. (2002)

    Yeh, C.H, Peng, H.C, Yang, R.S. & Huang, T.F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmacol. 59, 1333-1342. (2001)

    周立哲, 馬來蝮蛇蛇毒蛋白及其D51E突變蛋白結構的核磁共振研究。國立成功大學生物化學研究所碩士論文, 2000。

    陳金榜, 蛋白質在水溶液中之結構-多維異核核磁共振之應用。 科儀新知, 第十五卷, 第六期, 40-46, 1994。

    陳彥青, 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究。國立成功大學生物化學研究所碩士論文, 2001。

    許家豪, 含RGD序列蛋白在辨識組合蛋白上的結構與功能關係之研究。國立成功大學生物化學研究所碩士論文, 2003。

    黃忠智及余靖, 利用核磁共振光譜決定台灣眼鏡蛇蛇毒蛋白分子的水溶液中三度空間結構。 科儀新知, 第十五卷, 第六期, 21-39, 1994。

    謝惠珠及余靖, 當今液態核磁共振儀在蛋白分子之重要發展及應用。科儀新知, 第二十二卷, 第五期, 45-57, 2001。

    下載圖示 校內:2007-07-29公開
    校外:2007-07-29公開
    QR CODE