| 研究生: |
彭郁濃 Peng, Yu-Nung |
|---|---|
| 論文名稱: |
術中核磁共振影像導引立體定位手術機器人 Intraoperative MR Image-Guided Stereotactic Robot |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 磁振造影相容 、神經外科 、立體定位手術 、手術機器人 、術中磁振造影 |
| 外文關鍵詞: | MRI-compatible, stereotactic neurosurgery, robotic surgery, intraoperative MRI. |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在腦神經外科領域中,立體定位手術為一項廣泛使用的核心技術,可用在深腦電刺激、活檢、燒灼術等。通常在手術前會先透過腦部的醫學影像確立目標點並進行手術規劃。手術中醫師於頭骨上鑽一小孔讓器械進入腦內以減少腦組織的傷害,但由於開孔非常小,因此在手術進行中無法確認器械末端位置。另外開顱後因腦脊髓液流失造成腦組織形變,導致定位誤差。為提升手術效率以及定位的精準度,本研究結合術中磁振造影以及機器定位系統,發展出影像導引立體定位機器人並建立其順、逆向運動學,並提出位置補償演算法。相較於傳統定位儀,本研究開發之定位機器人僅需五個自由度,除降低成本外,使用上更加直觀且因致動器較少而降低電磁波對影像的干擾。
本研究利用自製凝膠假體,實際在磁振造影系統中模擬定位機器人進行立體定位手術。發展定位架以進行座標對位,將目標點位置從掃描艙座標轉至機器人基座座標。此外,利用3D Slicer軟體點選目標點位置,再帶入逆向運動學求出機器人關節運動參數,控制驅動系統讓機器人自動定位並進行手動穿刺。結果顯示運用術中即時影像回授和位置補償演算法,位置誤差可從5.15±0.56 mm降低為2.97±0.46 mm。本研究提出的影像回授位置補償方法可以有效降低位置誤差量使導針接觸到目標,另外整合Solidworks, Labview和3D Slicer等軟體可以模擬立體定位手術的過程,提供臨床醫師術前模擬之用。
Stereotactic surgery is an important core technology that has been widely used in the field of neurosurgery for biopsy, ablation and deep brain stimulation (DBS). The surgery is operated through a small keyhole and it is hard to confirm the position of surgical devices. The performance of the surgery depends on accuracies of surgical devices positioning and pre-operation images. Integrating intraoperative magnetic resonance images and surgical robots can enhance the efficiency and safety of the patients. In this study, a five-degree-of-freedom (DOF) mechanism developed in our previous work was used to do the stereotactic surgery procedure with MRI guidance. A Z-shape fiducial module was employed to do the registration between scanner coordinates and robot coordinates. The MRI-guided experiment was operated within a 3T MRI scanner with a custom-made phantom. To improve positioning accuracy, a compensation method was derived based on the kinematic model of the robot. The results showed that MRI-guided targeting accuracy was 5.15±0.56 mm. After compensation, the targeting accuracy was improved to 2.97±0.46 mm and the cannula tip can touch the simulated target successfully. Furthermore, softwares Solidworks, Labview and 3D Slicer were integrated to build a system that can perform surgical planning, simulation or animation of the stereotactic surgery procedure.
[1] R. Clarke, "The Structure and Functions of the Cerebellum Examined by a New Method," Brain: A Journal of Neurology, vol.31, no. 1, p. 45, 1908.
[2] E. A. Spiegel, H. T. Wycis, M. Marks, and A. Lee, "Stereotaxic Apparatus for Operations on the Human Brain," Science, vol. 106, no. 2754, pp. 349-350, 1947.
[3] R. Damadian, "Tumor Detection by Nuclear Magnetic Resonance," Science, vol. 171, no. 3976, pp. 1151-1153, 1971.
[4] G. N. Hounsfield, "Computerized Transverse Axial Scanning (Tomography): Part 1. Description of system," The British Journal of Radiology, vol. 46, no. 552, pp. 1016-1022, 1973.
[5] L. Leksell and B. Jernberg, "Stereotaxis and Tomography a Technical Note," Acta Neurochirurgica, vol. 52, no. 1-2, pp. 1-7, 1980.
[6] A. Rojas-Villabona, K. Miszkiel, N. Kitchen, R. Jäger, and I. Paddick, "Evaluation of the Stability of the Stereotactic Leksell Frame G in Gamma Knife Radiosurgery," Journal of Applied Clinical Medical Physics, vol. 17, no. 3, p. 5944, 2016.
[7] G. Eggers, J. Mühling, and R. Marmulla, "Image-to-Patient Registration Techniques in Head Surgery," International Journal of Oral and Maxillofacial Surgery, vol. 35, no. 12, pp. 1081-1095, 2006.
[8] Y. Lu, C. Yeung, A. Radmanesh, R. Wiemann, P. M. Black, and A. J. Golby, "Comparative Effectiveness of Frame-Based, Frameless, and Intraoperative Magnetic Resonance Imaging–Guided Brain Biopsy Techniques," World Neurosurgery, vol. 83, no. 3, pp. 261-268, 2015.
[9] T. Sakaguchi, Percutaneous Puncture with a Robot. Japan: Acta Urol, pp. 1265-8, 1985.
[10] O. Lechky, "World's First Surgical Robot in B.C.," The Medical Post, vol. 21, no. 23, pp. 92-93, 1985.
[11] H. M. Shao, J. Y. Chen, T. K. Truong, I. S. Reed, and Y. S. Kwoh, "A New CT-Aided Robotic Stereotaxis System," Proceedings of the Annual Symposium on Computer Application in Medical Care, pp. 668-672, 1985.
[12] D. Glauser, H. Fankhauser, M. Epitaux, J.-L. Hefti, and A. Jaccottet, "Neurosurgical Robot Minerva: First Results and Current Developments," Journal of Image Guided Surgery, vol. 1, no. 5, pp. 266-272, 1995.
[13] A. L. Goldson, "Preliminary Clinical Experience with Intraoperative Radiotherapy," Journal of the National Medical Association, vol. 70, no. 7, p. 493, 1978.
[14] A. E. Sloan et al., "Results of the NeuroBlate System First-in-Humans Phase I Clinical Trial for Recurrent Glioblastoma," Journal of Neurosurgery, vol. 118, no. 6, pp. 1202-1219, 2013.
[15] Image Guided Surgery for Brain Tumors. Available: https://www.youtube.com/watch?v=N6Xn--e90oQ&t=140s
[16] T. Speicher, M. Berger, K. Hauschild, and A. Fricke, "Optimizing a Biopsy Needle using a Simulation Model," in Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 2017.
[17] P. A. Starr, A. J. Martin, J. L. Ostrem, P. Talke, N. Levesque, and P. S. Larson, "Subthalamic Nucleus Deep Brain Stimulator Placement using High-Field Interventional Magnetic Resonance Imaging and a Skull-Mounted Aiming Device: Technique and ApplicationAccuracy," Journal of Neurosurgery, vol. 112, no. 3, pp. 479-490, 2010.
[18] P. A. Starr, L. C. Markun, P. S. Larson, M. M. Volz, A. J. Martin, and J. L. Ostrem, "Interventional MRI–guided Deep Brain Stimulation in Pediatric Dystonia: First Experience with the ClearPoint System," Journal of Neurosurgery: Pediatrics, vol. 14, no. 4, pp. 400-408, 2014.
[19] K. Chinzei, N. Hata, F. A. Jolesz, and R. Kikinis, "MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study," in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 921-930, 2000.
[20] R. Gassert, R. Moser, E. Burdet, and H. Bleuler, "MRI/fMRI-CompatibleRobotic System with Force Feedback for Interaction with Human Motion," IEEE/ASME Tran on Mechatronics, vol. 11, no. 2, pp. 216-224, 2006.
[21] G. S. Fischer et al., "MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement," IEEE/ASME Tran on Mechatronics, vol. 13, no. 3, pp. 295-305, 2008.
[22] G. Li et al., "Robotic System for MRI-Guided Stereotactic Neurosurgery," IEEE Tran on Biomedical Engineering, vol. 62, no. 4, pp. 1077-1088, 2015.
[23] X. Wang, S. S. Cheng, and J. P. Desai, "Design, Analysis, and Evaluation of a Remotely Actuated MRI-Compatible Neurosurgical Robot," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2144-2151, 2018.
[24] D. Stoianovici et al., "Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot," IEEE Tran on Biomedical Engineering, vol. 65, no. 1, pp. 165-177, 2018.
[25] J. A. Derbyshire, G. A. Wright, R. M. Henkelman, and R. S. Hinks, "Dynamic Scan‐Plane Tracking using MR Position Monitoring," Journal of Magnetic Resonance Imaging, vol. 8, no. 4, pp. 924-932, 1998.
[26] R. C. Susil, J. H. Anderson, and R. H. Taylor, "A Single Image Registration Method for CT Guided interventions," in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 798-808, 1999.
[27] R. C. Susil et al., "Transrectal Prostate Biopsy and Fiducial Marker Placement in a Standard 1.5 T Magnetic Resonance Imaging Scanner," The Journal of Urology, vol. 175, no. 1, pp. 113-120, 2006.
[28] S. Lee, G. Fichtinger, and G. S. Chirikjian, "Numerical Algorithms for Spatial Registration of Line Fiducials from Cross‐Sectional Images," Medical Physics, vol. 29, no. 8, pp. 1881-1891, 2002.
[29] W. Shang and G. S. Fischer, "A High Accuracy Multi-Image Registration Method for Rracking MRI-Guided Robots," in Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, 2012, vol. 8316, p. 83161V: International Society for Optics and Photonics.
[30] 3D Slicer Website. Available: https://www.slicer.org/
[31] A. Fedorov et al., "3D Slicer as an Image Computing Platform for the Quantitative Imaging Network," Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1323-1341, 2012.
[32] R. Kikinis, S. D. Pieper, and K. G. Vosburgh, "3D Slicer: a Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support," in Intraoperative Imaging and Iimage-Guided Therapy, pp. 277-289, 2014.
[33] T. Ungi, A. Lasso, and G. Fichtinger, "Open-Source Platforms for Navigated Image-Guided Interventions," Medical Image Analysis, vol. 33, pp. 181-186, 2016.
[34] H. Su et al., "A MRI-Guided Concentric Tube Continuum Robot with Piezoelectric Actuation: a Feasibility Study," in Robotics and Automation (ICRA), 2012 IEEE International Conference, pp. 1939-1945, 2012.
[35] 何炳林,"磁振造影相容之神經外科用立體定位手術機器人之發展",國立成功大學機械工程學系,碩士論文,2016
[36] 陳煌霖,"磁振造影相容之神經外科手術用五軸立體定位機器系統研究
",國立成功大學機械工程學系,碩士論文,2018
[37] T. Hartkens et al., "Measurement and Analysis of Brain Deformation during Neurosurgery," IEEE Tran on Medical Imaging, vol. 22, no. 1, pp. 82-92, 2003.
[38] Coordinate Systems. Available: https://www.slicer.org/wiki/Coordinate_systems
[39] A. Hellerbach, V. Schuster, A. Jansen, and J. Sommer, "MRI Phantoms – Are There Alternatives to Agar" Plos One, vol. 8, no. 8, p. e70343, 2013.
[40] P. Krack, P. Limousin, A. L. Benabid, and P. Pollak, "Chronic Stimulation of Subthalamic Nucleus Improves Levodopa-Induced Dyskinesias in Parkinson's disease," The Lancet, vol. 350, no. 9092, p. 1676, 1997.
[41] J. A. Saint-Cyr et al., "Localization of Clinically Effective Stimulating Electrodes in the Human Subthalamic Nucleus on Magnetic Resonance Imaging," Journal of Neurosurgery, vol. 97, no. 5, p. 1152, 2002.
校內:2024-08-01公開