| 研究生: |
簡碩亨 Chien, Shuo-Heng |
|---|---|
| 論文名稱: |
以微振動探討地層特性與評估地震災害之研究—以雲林、南彰化地區為例 Study on the Investigating of Soil characteristics and Evaluating the Seismic hazard Using Microtremor in Yunlin and South Changhua Area |
| 指導教授: |
吳建宏
Wu, Jian-Hong 李德河 Lee, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | 微振動 、標準貫入試驗 、土壤液化 、卓越頻率 、卓越週期 |
| 外文關鍵詞: | Microtremor, Standard Penetration Test (SPT), Predominant frequency, Soil Liquefaction, Predominant Period |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雲林與南彰化地區在1999年的集集地震中廣泛遭受包含結構損壞、土壤液化事件。考量到災害地點容易受地層條件影響,因此有必要研究這些地區在地層與地震災害的交互關係,然而在傳統地層調查作法上,常使用的標準貫入試驗(SPT)或是圓錐貫入試驗(CPT)卻往往需要耗費大量時間、經費、且受限於試驗設備操作空間等限制,因此本研究使用攜帶方便的非破壞性檢測儀器微振儀量取微振動訊號,並以其為基礎建立一種快速且簡便探討地層特性以及評估地震引發土壤液化潛勢的方法。
本研究分為兩部分,第一部分於現地使用微振動量測得到H/V振幅頻譜圖,接著利用?=??/4?轉換式將(H/V)振幅頻譜圖轉(?⁄?)?—深度圖比較與土壤強度參數SPT-?值之間的關係,並以此為基礎推估地層剪力波速,再以放大係數(?⁄?)?值建立評估土壤液化潛(Liquefaction Potential Jian, ??? ),同時利用雲林、南彰化研究區域具有的鑽探資料的孔位進行比對,經NCEER法(2001)液化評估方法,計算出液化潛勢指數(LPI),並迴歸出關係式為???=2.634???,以此定義低中高液化潛勢時之關係;第二部分,於研究區域上將微振動分析而得到之各點位卓越週期,經由內插法繪製全區卓越週期分布圖,並與921集集地震發生建築物災損之地點進行疊圖分析,探討卓越週期與災損建築物基本振動週期之關係。
第一部分研究結果發現,經回歸微振動液化評估法得到之???與LPI之關 聯性可以定義液化潛勢分界,低度液化潛勢時???≤2,中度液化潛勢時2 <???≤6,高度液化潛勢時???≥ 6;第二部分結果發現,921集集地震中毀損之建築物基本振動週期大多與地盤卓越週期分布相近,因此本研究繪製之卓 II 越週期分布圖或許可提供未來本區域之建築物設計規劃作參考。
Yunlin and Southern Changhua areas were widely affected by structural damage and soil liquefaction events during the 1999 Chichi earthquake. Considering that disaster locations are often influenced by local geological conditions, this study employs portable and non-intrusive approach with microtremor, to collect microtremor signals. Based on these signals, a rapid and simple method is established to investigate soil characteristics, shear wave velocity (Vs) and soil liquefaction potential.
The first part uses H/V amplitude spectral ratios of the site obtained by microtremor. These H/V amplitude spectra are then converted into (H/V)f - depth profiles using the function fg = Vs/4H. Then, we compared the relationship between these profiles and SPT-N values. Based on this relationship, the shear wave velocity can be estimated. Additionally, the amplification factor (H/V)f is used to establish the Liquefaction Potential Jian (LPJ), and then calculates the liquefaction potential index (LPI). Finally, regression relational function to assessment the relationship between the LPI.
In the second part, the predominant period at each measurement point, obtained through microtremor analysis within the study area, is applied to the study area by GIS interpolation. This map is then overlaid with the locations of building damage from the 921 Chi-Chi earthquake to analyze the relationship between the predominant period and the natura period of the damaged buildings.
Finally, the relationship between the LPJ and the LP) can be used to classify liquefaction potential. when LPJ of ≤2 indicates low liquefaction potential, 2< LPJ ≤6 indicates moderate liquefaction potential, and LPJ ≥6 indicates high liquefaction potential.
[1] 工程地質探勘資料庫整合查詢平台,經濟部中央地質調查所。檢自: https://geotech.moeacgs.gov.tw/imoeagis/Home/Map (2023、2024)
[2] 中央地調所土壤液化潛勢查詢系統-緣起。檢自: https://www.liquid.net.tw/cgs/public/story01.html (2024)
[3] 中央氣象局地震測報中心。檢自https://scweb.cwb.gov.tw/zh-tw/station/?fbclid=IwAR3urITFH5u93wwgSlqPMaq1kfR7hGQDh6gIW6FUim3qXyudnKwS3DDSwPo (2023、2024)
[4] 水文地質資料庫整合查詢平台,內政部國土測繪中心。檢自: https://hydrogis.moeacgs.gov.tw/map/zh-tw (2023、2024)
[5] 內政部營建署 (2019)。建築物耐震設計規範與解說。第十一章: 其他耐震相關規定。
[6] 台灣世曦工程顧問股份有限公司 (2018)。彰化縣土壤液化潛勢區中級圖資第一期建置暨地質改善示範工程評估調查及設計服務案。彰化縣政府工務局報告。彰化。台灣。
[7] 台灣世曦工程顧問股份有限公司 (2020)。雲林縣109年度土壤液化調查與風險評估計劃委託技術服務。雲林縣政府工務局報告。雲林。台灣。
[8] 台灣世曦工程顧問股份有限公司 (2021)。雲林縣110年度土壤液化調查與風險評估計劃委託技術服務。雲林縣政府工務局報告。雲林。台灣。
[9] 台灣世曦工程顧問股份有限公司 (2021)。彰化縣110年度土壤液化調查與風險評估計劃委託技術服務。彰化縣政府工務局報告。彰化。台灣。
[10] 市川雄一(1929) 台灣煤田之地層研究。地質學雜誌,第36卷,第429號,第282-292頁。
[11] 全國強震測站場址工程地質資料庫。檢自: http://egdt.ncree.org.tw/news.htm (2023、2024)
[12] 全球災害事件簿。檢自: https://den1.ncdr.nat.gov.tw/1178/1655/ (2024)
[13] 地層下陷防治資訊網,成大水工試驗所團隊。檢自: http://www.lsprc.ncku.edu.tw/zh-tw (2024)
[14] 地質雲加值應用平台-土壤液化潛勢。檢自: https://www.geologycloud.tw/map/liquefaction/zh-tw (2024)
[15] 李振毓 (2020),以微震儀 H/V 頻譜圖波形進行地層力學特性判釋之研究。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[16] 林呈、孫洪福 (2000),見證 921 集集大地震:震害成因與因應對策。
[17] 林晟毅 (2014) ,利用微地動場址特性擬合技術推估台北盆地S波速度構造。國立中央大學地球科學所,碩士論文,桃園,台灣。
[18] 林朝棨 (1957),臺灣省通志稿:土地志地理篇第1冊(地形)。台灣:臺灣省文獻委員會。
[19] 林俊全 (1997),芳苑鄉志-地理篇。彰化縣芳苑鄉公所出版 。彰化縣 。台灣。
[20] 林其璋 魏志揚 張長菁 (2002),921地震高層建築之震害分析。國家地震研究中心。台中市。台灣。
[21] 林宇軒 (2023),以微震儀 H/V 頻譜圖波形進行地層力學特性判釋之研究。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[22] 陳文福 (2000),濁水溪扇州一萬年來之濱線變遷。第四屆台灣地理學術研討會論文集。第45-54頁 。台北 。台灣。
[23] 陳冠宇 (2019),地表微振動與土壤液化潛勢關係之研究:以台南都會區為例。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[24] 陳銘鴻、陳景文、李維峰、王志榮、辜炳寰 (2002)。簡易液化評估法之修正與微分區應用。土壤液化問題之回顧與展望,第 31-62 頁。
[25] 連慧珠、周國屏、龔琪嵐 (2018),新修彰化縣志.卷二.地理志.人文地理篇。彰化縣政府出版。彰化縣。台灣。
[26] 郭俊翔、溫國樑、謝宏灝、林哲明& 張道明 (2011),近地表剪力波速性質之研究。國家地震工程研究中心。
[27] 郭子源 (2022),應用地表微振動判釋地層特性與地震場址效應之研究:以台南、高雄地區為例。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[28] 張瑞津 (1985),濁水溪平原的地勢分析與地形變遷。國立臺灣師範大學地理研究報告,第十一期,第199-218頁。
[29] 張睦雄、蕭士慧、吳宗富 (2003),彰化、雲林地區土壤液化潛能評估與潛能圖繪製。國家地震工程研究中心。雲林縣。台灣。
[30] 莊東霖 (2021),以地表微振動評估台南、北高雄地區場址效應與土壤液化潛勢之研究。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[31] 黃文紀 (1986),羅東強震儀陣列區微地動之來源與特性。國立中央大學地球物理所,碩士論文,桃園,台灣。
[32] 黃有志(2003),蘭陽平原場址效應及淺層S波速度構造,國立中央大學地球物理所,碩士論文,桃園,台灣。
[33] 黃雋彥 (2009),利用微地動量測探討台灣地區之場址效應,國立中央大學地球物理所,碩士論文,桃園,台灣。
[34] 游能悌、顏一勤 (2013),鹿港[臺灣地質圖幅及說明書1/50,000]。中央地質調查所出版。新北市。台灣。
[35] 雲林縣政府編印 (2011),雲林縣地區災害防救計畫【110年版】。雲林縣政府。雲林。台灣。
[36] 雲林縣政府編印 (1997),雲林縣發展史(上)。雲林縣政府出版。雲林縣。台灣。
[37] 萬鼎工程顧問股份有限公司 (2018),雲林縣土壤液化潛勢區中級圖資第一期建置暨地質改善示範計畫委託技術服務。雲林縣政府工務局報告。雲林。台灣。
[38] 楊貴三 黃文樹 李孟芬 (2014),新修彰化縣志.卷二.地理志.自然地理篇。彰化縣政府出版。彰化縣。台灣。
[39] 楊宏裕 (2018),地景‧雲嘉南/人文旅遊叢書。交通部觀光局雲嘉南濱海國家風景區管理處,台灣。
[40] 鄭文隆、吳偉康 (1985),土壤液化之災害型態與現地研判。地工技術雜誌,第90期,第90-103頁。
[41] 臧振華 (1995),臺閩地區考古遺址彰化縣、雲林縣、嘉義縣、嘉義市 。內政部。台北市。台灣。
[42] 劉桓吉、李錦發 (1998),雲林[臺灣地質圖幅及說明書1/50,000] 。中央地質調查所出版。新北市。台灣。
[43] 劉益昌 (2012),濁水沖積扇區域史前文化與人群關係之研究。國史館台灣文獻館。南投。台灣。
[44] 劉博翔、吳建宏 (2023),花東地區地盤微振量測與分析。地工技術,第176期,第73-80頁。
[45] 盧志杰 (2017),NCEER液化評估程式說明與驗證。國家地震工程研究中心。台北市。台灣。
[46] 戴玉琳 (2020),應用CPT模型評估土壤液化引致沉陷及側向擴展。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[47] 羅俊雄、鍾立來、黃炯憲、鄧崇任、葉錦勳、張順益、簡文郁、柴駿甫 劉季宇、廖文義、李政寬、黃富國、鄧慰先、翁作新、張國鎮、黃震興 (1999) 集集地震初步勘災報告。國家地震中心。
[48] AA.VV.-SESAME (2005). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations.
[49] Alcock, E.D. (1974). Comments on “Comparison of earthquake and microtremor ground motions in El Centro, California” by F. E. Udwadia and M. D. Trifunac. Bulletin of the Seismological Society of America, 64(2), pp. 495.
[50] Asten, M.W. & Henstridge, J.D. (1984). Arrays estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics, 49(11), pp. 1828–1837.
[51] Akin, M.K., Kramer, S.L., Topal, T. (2011). Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey). Engineering Geology, Vol: 119, Issue: 1, pp. 1-17.
[52] Borcherdt, R.D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), pp. 29-61.
[53] Bray, J.D. and Macedo, J. (2017). 6th Ishihara Lecture: Simplified Procedure for Estimating Liquefaction-Induced Building Settlement, Soil Dynamics and Earthquake Engineering J., V 102, pp. 215-231.
[54] Casagrande, A. (1936). Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills, Journal of the Boston Society of Civil Engineers, Vol. 23, No. 1, pp. 1332. (Reprinted in Contributions to Soil Mechanics, pp. 1925-940, Boston Society of Civil Engineers, Oct., 1940.)
[55] Fukuwa, N. & Tobita, J. (2000). Examination of estimated surface layer profiles based on soil data and microtremor records using observed seismic ground motions. 12th World Conference on Earthquake Engineering, Paper No.1343, Auckland, New Zeland.
[56] Farazi, A.H., Ito, Y., Garcia, E.S.M., Lontsi, A.M., S´anchez-Sesma, F.J., Jaramillo, A., Ohyanagi, S., Hino, R., Shinohara, M. (2023). Shear wave velocity structure at the Fukushima forearc region based on H/V analysis of ambient noise recordings by ocean bottom seismometers. Geophysical Journal International, Vol: 233, Issue: 3, pp. 1801–1820.
[57] Gaudio, D., Wasowski, J., Muscillo, S. (2013). New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Natural Hazards and Earth System Sciences, Vol: 13, Issue: 8, pp. 2075-2087.
[58] Gosar, A. (2007). Microtremor HVSR study for assessing site effects in the Bovec basin (NW Slovenia) related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes. Eng Geol, Vol:91, pp. 718-193.
[59] Hazen, A. (1920). Hydraulic-fill dams. Transactions of the American Society of Civil Engineers, 83(1), pp. 1713-1745.
[60] Hirotoshi, U. (2003). Extrapolation of Irregular Subsurface Structures Using the Horizontal-to-Vertical Spectral Ratio of Long-Period Microtremors. Bulletin of the Seismological Society of America, Vol. 93, No. 2, pp. 570–582.
[61] Housner, G.W. (1952) Spectrum Intensities of Strong-Motion Earthquakes. Retrived April 16 from: http://egdt.ncree.org.tw/news.htm (2022、2023) https://reurl.cc/jDvgb2 (2023) https://www.liquid.net.tw/cgs/Web/Map.aspx (2023) https://www.taiwan.net.tw/m1.aspx?sNo=0042809 (2023)
[62] Huang, H.C., & Teng, T. L. (1999). An evaluation on H/V ratio vs. spectral ratio for site-response estimation using the 1994 Northridge earthquake sequences. pure and applied geophysics, 156(4), pp. 631-649.
[63] Ishihara, K. and Koga, Y. (1981). Case studies of liquefaction in the 1964 Niigata earthquake. Soils and Foundations, Vol: 21, Issue: 3, pp. 35-52.
[64] Iwasaki, T., Arakawa, T., Tokida, K. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, Vol: 3, Issue: 1, pp. 49-58.
[65] Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proc. of 11th ICSMFE, 1985, 1, pp. 321-376.
[66] Ishihara, K., Yoshimine, M. (1992). Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes. Soils and Foundations, Volume 32, Issue 1, March 1992, pp. 173-188.
[67] Johansson, J (2000). Flow Liquefaction & Cyclic Mobility. Retrieved from https://depts.washington.edu/liquefy/html/what/what2.html (2022)
[68] J-SESAME (2004). J-SESAME User Manual Version 1.08. Retrived May 7 from:https://www.geo.uib.no/seismo/SOFTWARE/SESAME/USER-MANUAL/J-SESAME-User-Manual-Ver1-08.pdf (2024)
[69] Kagami, H., Duke, M C., Liang, G C., Ohta, Y. (1982). Observation of 1- to 5-second microtremors and theirapplication to earthquake engineering. Part ii. Evaluation of site effect upon seismic wave amplification due to extremely deep soil deposits. Bulletin of the Seismological Society of America, Vol. 72, No. 3, pp. 987-998.
[70] Kanai, K., Tanaka, T., & Osada, K. (1954). Measurement of the Microtremor. 1. Bull. Earthq. Res. Inst, 32, pp. 199-209.
[71] Kanai, K., Tanaka, T., & Osada, K. (1962). On the predominant period of earthquake motions. Bulletin of the Earthquake Research Institute, 40, pp. 855-860.
[72] Katz, L. J. (1976). Microtremor analysis of local geological conditions. Bulletin of the Seismological Society of America, 66(1), pp. 45–60.
[73] Kavazanjian, E., Andrade, J.E., Arulmoli, K., Atwater, B., Christian, J., Green, R., Kramer, S., Mejia, L.H., Mitchell, J.K., Rathje, E,. Rice, J.R., Wang, Y. (2016). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences., The National Academies Press. Washington. United States.
[74] Kiyono, J., Ono, Y., Sato, A., Noguchi, T., & Putra, R. R. (2011). Estimation of subsurface structure based on microtremor observations at Padang, Indonesia. ASEAN Engineering Journal, Part C, 1(3), pp. 66-81.
[75] Ku, C.S., Juang, C.H. (2012). Liquefaction and cyclic softening potential of soils – a unified piezocone penetration testing-based approach. Geotechnique, 62(5), pp. 457-461.
[76] Kyaw, Z.L., Pramumijoyo, S., Husein, S., Fathani, T. F., & Kiyono, J. (2014). Investigation to the local site effects during earthquake induced ground deformation using microtremor observation in Yogyakarta, Central Java-Indonesia. Landslide Science for a Safer Geoenvironment , pp. 241-249.
[77] Kyaw, Z.L., Pramumijoyo, S., Huseinb, S., Fathanic, T F., Kiyonod, J., And Putra, R R. (2014). Estimation of Subsurface Soil Layers using H/V Spectrum of Densely Measured Microtremor Observations (Case Study: Yogyakarta City, Central Java-Indonesia). International Journal Sustainable Future for Human Security , Vol. 2, No, 1. pp. 13-20.
[78] Lee, C.T., & Tsai, B.R. (2008). Mapping Vs30 in Taiwan. Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, pp. 671-682.
[79] Lermo, J., & Chávez-García, F. J. (1994). Are microtremors useful in site response evaluation?. Bulletin of the seismological society of America, 84(5), pp. 1350-1364.
[80] Lermo, J., & Chávez-García, F.J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the seismological society of America, 83(5), pp. 1574-1594.
[81] Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997). Cone Penetration Testing in Geotechnical Practice. Blackie Academic & Professional, London, pp. 312 .
[82] Lu, G.Y. & Wong, D.W. (2008) An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, Vol: 34, Issue: 9, Page: pp. 1044-1055.
[83] Marsan, D. and Daniel, G. (2007) Measuring the Heterogeneity of the Coseismic Stress Change Following the 1999 Mw7.6 Chi-Chi Earthquake. JGR Solid Earth Vol:112, Issue: B7, pp. 148-227.
[84] Mogami, T., & Kubo, K. (1953). The behavior of sand during vibration. Proc. 3rd ICSMFE, 1, pp. 152-155.
[85] Mokhberi, M., Davoodi, M., Haghshenas, E. & Jafari, M. K. (2013). Experimental evaluation of the H/V spectral ratio capabilities in estimating the subsurface layer characteristics. Iranian Journal of Science and Technology, 37(C), pp. 457–468.
[86] Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161(2), pp. 303-308.
[87] Nakamura, Y. (1996).Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. QUARTERLY REPORT-RTRI, 37(3), pp. 112-127.
[88] Nakamura,Y. (1989). A Method for Dynamic Characteristics Estimation of Surface Layers using Microtremor on the Surface, Quarterly Report of RTRI Vol. 30 No.1, pp. 18–27
[89] Nur Ayu Diana Citra Dewi S.Pa , Rini Trisno Lestarib , Ria Asih Aryani Soemitroc , Dwa Desa Warnanad. (2016). Earthquake Microzonation and VS, 30 Mapping Based on Microtremor Measurement (Case Study in Kaliwates and Sumbersari Sub-District, Jember Regency) .Social and Behavioral Sciences 227, page pp. 354-360
[90] Ohsaki, Y. & Iwasaki, R. (1973). On dynamic shear moduli and Poisson’s ratio of soil deposits. Soil Found, 13(4), pp. 61-73.
[91] Ohta, Y., Kagami, H., Goto, N. & Kudo, K. (1978). Observation Of 1- To 5-Second Microtremors And Their Application To Earthquake Engineering. Part I: Comparison With Long-Period Accelerations At The Tokachi-Oki Earthquake Of 1968". Bulletin of the Seismological Society of America, Vol. 68, No. 3, pp. 767-779.
[92] Omori, F. (1908). Imperial Earthquake Investigation Committee. Bulletin of the Imperial Earthquake Investigation Committee, 2(1), pp. 51–57.
[93] Robertson, P.K. & Wride, C.E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), pp. 442-459.
[94] Seed, H.B. and Idriss I.M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential, Am. Soc. Civil Engineers Proc. Jour. Soil Mechanics and Found. Div. Vol. 92, No. SM6, pp. 105-134.
[95] Seed, H.B., Tokimatsu, K., Harder, L. F., & Chung, R.M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), pp. 1425-1445.
[96] Singh, A.P., Shukla, A., Kumar and M.G M.R. Thakkar (2017). Characterizing surface geology, liquefaction potential, and maximum intensity in the Kachchh seismic zone, western India, through microtremor analysis, Bull Seismol Soc Am,Vol:107, pp. 1277-1292.
[97] Terzaghi, K, (1925). Principles of Soil Mechanics: I—Phenomena of Cohesion of Clays, Engineering News-Record, Vol. 95, No. 19, pp. 742-746.
[98] Udwadia, F.E. & Trifunac, M.D. (1973). Time and amplitude dependent response of structures. The Journal of the International Association for Earthquake Engineering, 2(4), pp. 359–378.
[99] Wright, S. (1921 a). Correlation and causation. Jour. Agric, Res. 20, pp. 557-585.
[100] Youd, T.L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), pp. 297-313.
校內:2029-08-20公開