簡易檢索 / 詳目顯示

研究生: 黃意君
Huang, Yi-Jyun
論文名稱: Part 1: 閘極氧化層沈積前清洗水溫對深次微米CMOS元件特性影響之研究 Part 2: 金屬矽化物之形成技術對薄氧化介電層之影響
Part 1: Effect of Pre-Gate Oxide Clean Water Temperature on The Performances of Deep-submicron CMOS Part 2: Impact of Silicide Technologies on The Integrity of Thin Gate Oxide Film Dielectric
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 121
中文關鍵詞: 緻密性表面粗糙深次微米熱去離子水金屬矽化物
外文關鍵詞: GOI, micro-roughness, HQDR, QDR, fluctuations, silicide
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Part 1
    本論文中,研究熱去離子水清洗所造成的晶圓表面粗糙及應力對元件的電性特性如導通電壓、飽和電流、漏電流及崩潰電壓的影響。此外並研究熱去離子水對薄氧化層之電性如崩潰電壓及崩潰電荷的影響。吾人使用原子力學顯微鏡(AFM)來偵測晶圓表面的粗糙度及使用電容-電壓(C-V) 量測來調查介面陷阱電荷密度,結果發現熱去離子水清洗會增加晶圓表面粗糙與應力並導致元件特性如導通電壓、飽和電流及漏電流等的不均勻分佈及降低薄氧化層的崩潰電壓及崩潰電荷。

    Part 2
    吾人研究金屬矽化物對MOS結構中薄氧化層之緻密性的影響。吾人發現同時參雜多晶矽化物會導致薄氧化層之崩潰電壓下降,且在SiO2/Si介面形成較多的介面陷阱電荷,這是由於磷原子穿透到薄氧化層所造成。而離子佈值多晶矽化物在適當的退火條件下(800oC, 20 minutes furnace anneal),可以改善薄氧化層之緻密性,但在更高的退火時間及更長的退火溫度下會使薄氧化層之緻密性變差,這因為在熱處理過程中,參雜物會受熱的激化,擴散至薄氧化層中,增加薄氧化層之陷阱電荷,降低薄氧化層之緻密性。

    Part 1
    Effect of silicon surface micro-roughness and stress caused by hot DI water rinse on the electrical properties of deep-submicron CMOS transistors and MOS capacitors such as threshold voltage, saturation current, leakage current and breakdown voltage (VBD) and charge to breakdown (QBD) have been studied systematically. It shows that the hot DI water rinse can lead to micro-roughness causing the wider distribution of the saturation current as well as threshold voltage and degrading the breakdown voltage of devices. Additionally, increase of surface roughness could induce higher interface trap charge. The micro-roughness of silicon surface is evaluated by the atomic force microscope (AFM) while the density of interface trap charges is measured by the C-V measurement.

    Part 2
    The impact of different silicide technologies on the gate oxide integrity (GOI) in the metal-oxide-semiconductor (MOS) has been studied in detail. We found that the in situ doped polysilicon results in lower breakdown voltage and more interface trap charges due to the penetration of phosphorus atoms. The implant-polysilicon was found to improve the gate oxide integrity (GOI) under the 800oC, 20 minutes furnace anneal. But the GOI become worse for higher temperature and longer anneal time due to the thermal process caused dopants diffusing into the gate oxide film results in more traps in the oxide, then degrades the gate oxide integrity.

    Part 1 Content Abstract (in Chinese) I Abstract (in English) II Content IV Table Captions VI Figure Captions VI Chapter 1 Introduction 1 1-1. Background 1 1-2. Sketch the thesis 3 Chapter 2 Principles 4 2-1. Clean mechanism 4 2-1-1. Particle 4 2-1-2. Metal contamination 4 2-1-3. Organic contamination 5 2-1-4. Surface micro-roughness 5 2-2. Basic IC process 6 2-3. C-V measurement 8 2-4. Atomic Force Microscope (AFM) 8 Chapter 3 Fabrication and Measurements 12 3-1. Device Fabrication 12 3-2. Metal Oxide Semiconductor (MOS) Fabrication 13 3-2-1. Wafer Cleaning 13 3-2-2. Oxide Film Deposition 14 3-2-3. Polycrystalline Silicon Deposition 15 3-2-4. Tungsten Silicide Deposition 16 3-3 Electrical Measurement 17 3-3-1. Wafer Accept Test (WAT) measurement 17 3-3-2. C-V measurement 17 3-4. Wafer Surface Microroughness and Stress Measurement 17 Chapter 4 Results and Discussion 18 4-1. Electrical Characteristic Analysis 18 4-1-1. The Electrical Properties of 0.14 μm CMOS Devices 18 4-1-2. The Electrical Properties of 0.13 μm CMOS Devices 19 4-1-3. The Electrical Properties of 0.13 μm CMOS Devices with High Threshold Voltage 20 4-2. Hot Water Etching Wafer Model 22 4-3. The Wafer Surface Measured by Atomic Force Microscope (AFM) 23 4-4. The Dit Calculated from C-V Measurement 23 4-5. The Breakdown Voltage (VBD) and Charge to Breakdown (QBD) of Thin Oxide Film 24 Chapter 5 Conclusion 25 Reference 26 Part 2 Content Abstract (in Chinese) I Abstract (in English) II Content III Figure Captions V Chapter 1 Introduction 1 1-1. Background 1 1-2. Sketch the thesis 2 Chapter 2 Principle 4 2-1. The Defect type of MOS structure and related measurement 4 2-1-1. The defect types in the MOS structure 4 2-1-1-1. Interface Trapped Charges (Qit) 4 2-1-1-2. Fixed Oxide Charges, Qf 5 2-1-2-3. Oxide trap Charges, Qot 5 2-1-2-4. Mobile ion charge, Qm 6 2-1-2. The measurement of oxide layer defect 6 2-1-2-1. The measurement of interface trap charges 7 2-1-2-2. The measurement of fixed oxide charges 7 2-1-2-3. The measurement of oxide trap charges 8 2-1-2-4. The measurement of mobile ion charges 8 2-2. The percolation of gate oxide breakdown [21] 9 2-3. The Comparison between Constant Current Stress (CCS) and Constant Voltage Stress (CVS) [22] 9 Chapter 3 Fabrication and Measurement 12 3-1. The Fabrication of MOS Capacitor 12 3-1-1. Wafer Clean 12 3-1-2. Oxide Film Deposition 13 3-1-3. Polycrystalline Silicon Deposition 14 3-1-4. Tungsten Silicide Deposition and Ion Implantation 15 3-1-4-1. Tungsten Silicide Deposition 15 3-1-4-2. Ion Implantation 15 3-2. Electrical Measurement 16 3-2-1. I-V measurement 16 3-2-2. C-V measurement 16 3-3. MOS Capacitor Cross Section Measurement 16 3-4. Gate Oxide Film investigation by SIMS 17 Chapter 4 Results and Discussion 18 4-1. The Cross-Section of MOS Capacitor 18 4-2. The Comparison of the MOS Capacitors 18 4-2-1. The Comparison of WSIx-Doped-Poly with STI MOS Capacitor and Implant-Poly with STI MOS Capacitor 18 4-2-2. The Comparison of Implant-Poly with STI MOS Capacito and Implant-Poly without STI MOS Capacitor 20 4-2-3. The Comparison of the Three MOS Capacitor Structures 21 Chapter 5 Conclusion 23 Reference 24

    Part 1
    Reference
    [1] W. Kern and D. A. Puotinen. “Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology,” RCA Review, Vol. 31, pp. 187-205, June, 1970.
    [2] C. Y. Chang and S. M. Sez., “ULSI TECHNOLOGY,” McGraw-Hill, New York, pp. 60-85, 1996.
    [3] S. Verhaverbeke, “Dielectric Breakdown in Thermally Grown Oxide Layers,” Katholieke Universiteit, Leuven, 1993.
    [4] J. M. Rosamilia, T. Boone, J. Sapjeta and K. Raghavachari. “Hot Water Etching of Silicon Surface: New Insights of Mechanistic Understanding and Implications To Device Fabrication,” Material Research Society Symposium Proceeding, Vol. 477, pp. 181, 1997.
    [5] S. Rajagopalan, U. Mitra, S. Pan, K. Gupta, C. M. Lin, G. Sery, S. Mittal, K. Hasserjian, W. J. Lo, and G. Neubauer, “Reaction of DI water and silicon and its effect on gate oxide integrity,” in Proc. IEEE IRPS , pp. 28-31, 1993.
    [6] P. H. Siger. “Trends in Water Cleaning,” Semic. Intl. Vol. 36, December, 1992.
    [7] T. Ohmi, T. Imaoka, I. Sugiyama, and T. Kezaka, “Metallic Impurities Segregation at the Interface between Si wafer and liquid during Wet Cleaning,” Journal of Electrochemistry Society, Vol. 139, pp. 3317 , 1992.
    [8] Michael Quirk, Julian Serda., “Semiconductor manufacturing technology, ” Prentice Hall, Upper Saddle River, NJ, c2001.pp.77-78
    [9] Wikipedia, “Atomic force microscope.” Internet: http://en.wikipedia.org/wiki/Atomic_force_microscope, May 18, 2006 [May 20, 2006].
    [10] A. Asenov and S. Kaya,” Effect of oxide interface roughness on the threshold voltage fluctuations in decanano MOSFETs with ultrathin gate oxides,” Simulation of Semiconductor Processes and Devices (2000) p. 135
    [11] YUNG TAUR and TAK H. NING: FUNDAMENTALS OF MODERN VLSI DEVICES (CAMBRIDGE, New York, 1998) Chap. 3 p. 120
    [12] I. H. Chen, C. W. Teng, D. J. TENG, and A. Nishimura,” Interface-Trap Enhanced Gate-Induced Leakage Current in MOSFET,” IEEE Electron Device Lett. 10 (1989) 216
    [13] J. H. Eisenberg, S. H. Shive, F. Stevie, G. S. Higashi, T. Boone, K. Hanson, J. B. Sapjeta, G. N. Dibello, K. L. Fulford, ”EFFECT OF HOT WATER EXPOSURE ON BARE SILICON SURFACES IN MOS PRCESSING,” Material Research Society Symposium Proceeding, Vol. 315, pp. 485 , 1993.
    [14] C. N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces,” IEEE Trans. Electron Devices ED-13, pp. 1497, 1980.
    [15] M. Kuhn, “A QUASI-STATICIC TECHNIQUE FOR MOS C-V AND SURFACE STATE MEASUREMENTS,” Solid-State Electron. Vol. 13, pp, 873-885. 1970
    [16] M. Kimura, J. Mitsuhashi, H. Koyama, “Si/Si02 interface states and neutral oxide traps induced by surface microroughness,” Journal of Apply. Physics, Vol. 77, No. 4, February, 1995.
    [17] T. C. Yang and Krishna C. Saraswat,” Effect of Physical Stress on the Degradation of Thin SiO2 Films Under Electrical Stress,” IEEE Trans. Electron Devices 47 (2000) 746
    [18] M. Miyashita, T. Tusga, K. Makihara, and T. Ohmi, “Dependence of Surface Microroughness of CZ, FZ, and EPI Wafer on Wet Chemical Processing,” Journal of Electrochemistry Society, Vol. 139, No. 8, August 1992.
    [19] T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, and I. Kawanabe, “Dependence of Thin-Oxide Films Quality on Surface Microroughness,” IEEE Trans. Electron Devices, Vol. 39. No. 3. March 1992.

    Part 2
    Reference
    [1] H. H. Ryu, H. S. Cha, and J. G. Lee,” Effect of Gate Electrode Structure on Gate Oxide Integrity,” Electrochemical and Solid-State Letters, pp. 61 G1-G3, 2003.
    [2] Y. L. Wu and Y. H. Lu,” Radiation Hardness Comparison of MOS Capacitors Using Tungsten Polycide and Cobalt Polycideas Gate Electrode Materials,” IEEE Electron Device Letters, Vol. 26, Issue. 7, pp. 483, July, 2005.
    [3] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Transition on Electron Device, ED-27, pp. 606, 1980.
    [4] D. K. Schroder, “Semiconductor material and device characterization” 2nd edition, Wiley, New York,1998.
    [5] B. E. Deal, M. Sklar, A. S. Grove and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” Journal of Electrochemistry. Society, Vol. 114, pp. 266, 1967.
    [6] Goetzberger, E. Klausmann and M. J. Schulz,”Interface states on semiconductor/insulator interface,” CRC Circuit Review Solid State Science, Vol. 6, pp. 1-43, 1976.
    [7] G. Declerck,”Characterization of surface states at the Si-SiO2 interface,” in Nondestructive Evaluation of Semiconductor Materials and Devices (J. N. Zemel, ed) Plenum Press, New York, pp. 105-148, 1979.
    [8] G. Greeuw, J. F. Verwey, “The mobility of Na+ , Li+ and K+ ions in thermal grown SiO2 films”, Journal of Apply Physics, Vol. 56, pp. 2218, 1984.
    [9] Y. Shacham-Diamond, A. Dedhia, D. Hoffstetter and W. G. Oldham, “Copper transport in thermally SiO2,” Journal of Electrochemistry Society, Vol. 140, pp. 2427, 1993.
    [10] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron, Vol. 5, pp. 285, 1962.
    [11] D. M. Brown and P. V. Gray, “Si-SiO2 fast interface state measurements,” Journal of Electrochemistry Society, Vol. 115, pp. 760, 1968.
    [12] C. N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces,” IEEE Transition on Electron Device, ED-13, pp. 701, 1966.
    [13] E. H. Nicollian and A. Goetzberger, “The Si-SiO2 interface---Electrical properties as determined by the metal-insulator-silicon conductance technique,” Bell System Technology Journal, Vol. 46, pp. 1055-1133, 1967.
    [14] J. S. Burgler and P. G. A. Jespers, “Charge pumping in MOS devices,” IEEE Transition on Electron Device, ED-16, pp. 297, 1969.
    [15] P. A. Muls, G. J. Declerck and R. J. van Overstraeten,”Characterization of the MOSFET operating in weak inversion,” Advanced In Electron. And Electron Physics, Vol. 47, pp. 197-266, 1978.
    [16] W. M. Warner, “The work function difference of the MOS-system with aluminum field plates and polycrystalline silicon field plates,” Solid State Electron, Vol. 17, pp. 769, 1974.
    [17] M. Kuhn and D. J. Silversmith, “Ionic contamination and transport of mobile ions in MOS structures,” Journal of Electrochemistry Society, Vol. 118, pp. 966, 1971.
    [18] T. M. Buck, F. G. Allen, J. V. Dalton and J. D. Struthers, “Studies of sodium in SiO2 films by neutron activation and radiotracer techniques,” Journal of Electrochemistry Society, Vol. 114, pp. 862, 1967.
    [19] Yon, W. H. Ko and A. B. Kuper, “Sodium distribution in thermal oxide on silicon by radiochemical and MOS analysis,” IEEE Transition Electron Device, ED-13, pp. 276, 1966.
    [20] B. Yurash and B. E. Deal, “A method for determining sodium content of semiconductor processing materials,” Journal of Electrochemistry Society, Vol. 115, pp. 1191, 1968.
    [21] Suehle, J.S.; “Ultrathin gate oxide reliability: physical models, statistics, and characterization” IEEE Transactions on Electron Devices, Vol. 49, Issue: 6, pp. 958 -971, June, 2002.
    [22] T. Nigam, R. Degraeve, G..Groeseneken, M. M. Heyns, H. E. Maes, “Constant current charge-to-breakdown: Still a valid tool to study the reliability of MOS structures?” in Proc. IEEE IRPS, pp. 62-69, March, 1998.
    [23] H. S. Momose, T. Ohguro, S. Nakamura, Y .Toyoshima, H. Ishiuchi, H. Iwai, “Study of wafer orientation dependence on performance and reliability of CMOS with direct-tunneling gate oxide,” in Digest of Technical Papers of VLSI Technology Symposium, pp. 77 -78, 2001.
    [24] K. Eriguchi, M. Niwa, “Correlation between lifetime, temperature, and electrical stress for gate oxide lifetime testing,” IEEE Electron Device Letters, Vol. 18, Issue: 12, pp. 577 -579, December, 1997.

    無法下載圖示 校內:2105-07-05公開
    校外:2105-07-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE