| 研究生: |
程冠文 Cheng, Kuan-Wen |
|---|---|
| 論文名稱: |
摻碲金屬有機骨架材料衍生氧化釩作為水系鋅離子電池陰極 Te-doped Metal-organic Frameworks Derived Vanadium Oxide Cathode for Aqueous Zinc-ion Batteries |
| 指導教授: |
陳雨澤
Chen, Yu-Ze |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 水系鋅離子電池 、金屬有機骨架化合物 、碲 、陰極 |
| 外文關鍵詞: | Aqueous zinc-ion batteries, Metal-organic frameworks, Tellurium, Cathode |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鋰資源的稀缺性問題,同族且成本較低的鈉、鉀離子電池研究逐年攀升。然而,為發揮高理論電容量特性,傳統電池多半是選擇有機電解液,這也使得電池有汙染環境及安全上的隱憂。因此,許多研究將目光放到更安全的水系電池上,尤其水系鋅離子電池,因具有低成本、高安全性、組裝環境簡便、高理論電容量(820 mAh/g)等特性,成為熱門選擇之一。
然而至此,水系離子電池仍有許多需要克服的難題:對於陰極活性材料而言,隨著鋅離子的遷入遷出,許多材料不堪負荷充放電過程的體積膨脹問題,進而造成急劇電容量衰減以及低循環壽命。此外,氧化物的低導電特性,也使得電荷轉移電阻的提升,從而降低電池的性能。因此開發合適的陰極材料,正是目前水系離子電池迫切需要解決的難題。
本研究透過水熱法,在合成金屬有機骨架材料過程中摻雜碲元素,經碳化後,得到碳骨架及氧化釩的複合材料。透過結合釩的多價態、碲元素高導電性、金屬有機骨架材料堅固結構等性質,得到高電容量、循環壽命佳、低電荷轉移電阻的水系鋅離子電池陰極材料。
Rechargeable aqueous zinc-ion batteries are regard as excellent candidate for next generation storage device due to their high theorical capacity (820 mAh/g), low cost and safety. However, most of the cathode materials are suffer in short-cycle life due to the insertion/extraction during charge and discharge process. Here in, we proposed a new type of composition, which combined carbon frameworks and vanadium oxide, and doped it with Tellurium to enhanced the electrical performance of batteries. Benefitting from the doping of Te and framework structure, the batteries shows high specific capacity (331 mAh/g),and long cycle life (500 cycles). Besides, with XPS and in-situ Raman, we revealed the reaction mechanism behind. It is helpful for the development of aqueous zinc batteries in near future.
1. Yaghi, O. M.; Li, G. M.; Li, H. L., Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework. Nature 1995, 378 (6558), 703-706.
2. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
3. Bagheri, M.; Masoomi, M. Y.; Dominguez, E.; Garcia, H., High hydrogen release catalytic activity by quasi-MOFs prepared via post-synthetic pore engineering. Sustain Energ Fuels 2021, 5 (18), 4587-4596.
4. Reddy, C. V.; Reddy, K. R.; Harish, V. V. N.; Shim, J.; Shankar, M. V.; Shetti, N. P.; Aminabhavi, T. M., Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energ 2020, 45 (13), 7656-7679.
5. Assen, A. H.; Yassine, O.; Shekhah, O.; Eddaoudi, M.; Salama, K. N., MOFs for the Sensitive Detection of Ammonia: Deployment of fcuMOF Thin Films as Effective Chemical Capacitive Sensors. Acs Sensors 2017, 2 (9), 1294-1301.
6. Yang, G. L.; Jiang, X. L.; Xu, H.; Zhao, B., Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small 2021, 17 (22).
7. Daglar, H.; Gulbalkan, H. C.; Avci, G.; Aksu, G. O.; Altundal, O. F.; Altintas, C.; Erucar, I.; Keskin, S., Effect of Metal-Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angew Chem Int Edit 2021, 60 (14), 7828-7837.
8. Georgiadis, A. G.; Charisiou, N.; Yentekakis, I. V.; Goula, M. A., Hydrogen Sulfide (H2S) Removal via MOFs. Materials 2020, 13 (16).
9. Jia, C.; Yuan, X. X.; Ma, Z. F., Metal-Organic Frameworks (MOFs) as Hydrogen Storage Materials. Prog Chem 2009, 21 (9), 1954-1962.
10. Panella, B.; Hirscher, M.; Putter, H.; Muller, U., Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 2006, 16 (4), 520-524.
11. Lu, S. Y.; Wu, H.; Hou, J. W.; Liu, L. M.; Li, J.; Harris, C. J.; Lao, C. Y.; Guo, Y. Z.; Xi, K.; Ding, S. J.; Gao, G. X.; Cheetham, A. K.; Kumar, R. V., Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. Nano Res 2020, 13 (8), 2289-2298.
12. Ding, Y. C.; Peng, Y. Q.; Chen, S. H.; Zhang, X. X.; Li, Z. Q.; Zhu, L.; Mo, L. E.; Hu, L. H., Hierarchical Porous Metallic V2O3@C for Advanced Aqueous Zinc-Ion Batteries. Acs Appl Mater Inter 2019, 11 (47), 44109-44117.
13. Mao, M.; Wu, X. X.; Hu, Y.; Yuan, Q. H.; He, Y. B.; Kang, F. Y., Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. Journal of Energy Chemistry 2021, 52, 277-283.
14. Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S., A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries. Adv Mater 2020, 32 (38).
15. Qian, Y. T.; Zhang, F. F.; Pang, H., A Review of MOFs and Their Composites-Based Photocatalysts: Synthesis and Applications. Adv Funct Mater 2021, 31 (37).
16. Yuan, R. R.; Qiu, J. L.; Yue, C. L.; Shen, C.; Li, D. W.; Zhu, C. Q.; Liu, F. Q.; Li, A. M., Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chem Eng J 2020, 401.
17. Lai, J. P.; Huang, B. L.; Chao, Y. G.; Chen, X.; Guo, S. J., Strongly Coupled Nickel-Cobalt Nitrides/Carbon Hybrid Nanocages with Pt-Like Activity for Hydrogen Evolution Catalysis. Adv Mater 2019, 31 (2).
18. Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L., Turning on Visible-Light Photocatalytic C-H Oxidation over Metal-Organic Frameworks by Introducing Metal-to-Cluster Charge Transfer. J Am Chem Soc 2019, 141 (48), 19110-19117.
19. Ferey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surble, S.; Dutour, J.; Margiolaki, I., A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem Int Edit 2004, 43 (46), 6296-6301.
20. Li, S. J.; Cui, J. N.; Wu, X.; Zhang, X.; Hu, Q.; Hou, X. H., Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. J Hazard Mater 2019, 373, 408-416.
21. Lieb, A.; Leclerc, H.; Devic, T.; Serre, C.; Margiolaki, I.; Mahjoubi, F.; Lee, J. S.; Vimont, A.; Daturi, M.; Chang, J. S., MIL-100(V) - A mesoporous vanadium metal organic framework with accessible metal sites. Micropor Mesopor Mat 2012, 157, 18-23.
22. Hou, Y. P.; Mao, H. Z.; Xu, L. Q., MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res 2017, 10 (1), 344-353.
23. Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W.; Ding, S. J., An Overview and Future Perspectives of Rechargeable Zinc Batteries. Small 2020, 16 (23).
24. Jiang, L. W.; Liu, L. L.; Yue, J. M.; Zhang, Q. Q.; Zhou, A. X.; Borodin, O.; Suo, L. M.; Li, H.; Chen, L. Q.; Xu, K.; Hu, Y. S., High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte. Adv Mater 2020, 32 (2).
25. Zhang, X. Q.; Dong, M. F.; Xiong, Y. L.; Hou, Z. G.; Ao, H. S.; Liu, M. K.; Zhu, Y. C.; Qian, Y. T., Aqueous Rechargeable Li+/Na(+)Hybrid Ion Battery with High Energy Density and Long Cycle Life. Small 2020, 16 (41).
26. Pan, W. D.; Wang, Y. F.; Zhao, X. L.; Zhao, Y.; Liu, X. H.; Xuan, J.; Wang, H. Z.; Leung, D. Y. C., High-Performance Aqueous Na-Zn Hybrid Ion Battery Boosted by "Water-In-Gel" Electrolyte. Adv Funct Mater 2021, 31 (15).
27. Su, D. W.; McDonagh, A.; Qiao, S. Z.; Wang, G. X., High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage. Adv Mater 2017, 29 (1).
28. Ren, W. H.; Chen, X. J.; Zhao, C., Ultrafast Aqueous Potassium-Ion Batteries Cathode for Stable Intermittent Grid-Scale Energy Storage. Adv Energy Mater 2018, 8 (24).
29. Ru, Y.; Zheng, S. S.; Xue, H. G.; Pang, H., Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chem Eng J 2020, 382.
30. Wu, X. B.; Qin, N.; Wang, F.; Li, Z. H.; Qin, J. Y.; Huang, G. J.; Wang, D. H.; Liu, P.; Yao, Q. R.; Lu, Z. G.; Deng, J. Q., Reversible aluminum ion storage mechanism in Ti-deficient rutile titanium dioxide anode for aqueous aluminum-ion batteries. Energy Storage Mater 2021, 37, 619-627.
31. Tong, Z. Q.; Lian, R. Q.; Yang, R.; Kang, T. X.; Feng, J. R.; Shen, D.; Wu, Y.; Cui, X.; Wang, H.; Tang, Y. B.; Lee, C. S., An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density. Energy Storage Mater 2022, 44, 497-507.
32. Shoji, T.; Hishinuma, M.; Yamamoto, T., Zinc Manganese-Dioxide Galvanic Cell Using Zinc-Sulfate as Electrolyte - Rechargeability of the Cell. J Appl Electrochem 1988, 18 (4), 521-526.
33. Chen, D.; Lu, M. J.; Cai, D.; Yang, H.; Han, W., Recent advances in energy storage mechanism of aqueous zinc-ion batteries. Journal of Energy Chemistry 2021, 54, 712-726.
34. Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J., Issues and opportunities facing aqueous zinc-ion batteries. Energ Environ Sci 2019, 12 (11), 3288-3304.
35. Nakata, A.; Murayama, H.; Fukuda, K.; Yamane, T.; Arai, H.; Hirai, T.; Uchimoto, Y.; Yamaki, J.; Ogumi, Z., Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle. Electrochim Acta 2015, 166, 82-87.
36. Sun, K. E. K.; Hoang, T. K. A.; Doan, T. N. L.; Zhu, Y. Y. X.; Tian, Y.; Chen, P., Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries. Acs Appl Mater Inter 2017, 9 (11), 9681-9687.
37. Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energ Environ Sci 2019, 12 (6), 1938-1949.
38. Yang, S.; Li, C.; Wang, Y. L.; Chen, S. M.; Cui, M. W.; Bai, X. F.; Zhi, C. Y.; Li, H. F., Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. Energy Storage Mater 2020, 33, 230-238.
39. Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y., Dendrites in Zn-Based Batteries. Adv Mater 2020, 32 (48).
40. Yang, Q.; Bang, G. J.; Guo, Y.; Liu, Z. X.; Yon, B. X.; Wang, D. H.; Huang, Z. D.; Li, X. L.; Fan, J.; Zhi, C. Y., Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In-Service Batteries. Adv Mater 2019, 31 (43).
41. Lu, W. J.; Xie, C. X.; Zhang, H. M.; Li, X. F., Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries. Chemsuschem 2018, 11 (23), 3996-4006.
42. Yang, Z. F.; Lv, C. N.; Li, W. B.; Wu, T. Q.; Zhang, Q.; Tang, Y. G.; Shao, M. H.; Wang, H. Y., Revealing the Two-Dimensional Surface Diffusion Mechanism for Zinc Dendrite Formation on Zinc Anode. Small 2021.
43. Zhang, Z. Y.; Said, S.; Smith, K.; Zhang, Y. S.; He, G. J.; Jervis, R.; Shearing, P. R.; Miller, T. S.; Brett, D. J. L., Dendrite suppression by anode polishing in zinc-ion batteries. J Mater Chem A 2021, 9 (27), 15355-15362.
44. Liu, X. Q.; Yang, F.; Xu, W.; Zeng, Y. X.; He, J. J.; Lu, X. H., Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite-Free Zn Anodes. Adv Sci 2020, 7 (21).
45. Zhou, W. J.; Chen, M. F.; Wang, A. R.; Huang, A. X.; Chen, J. Z.; Xu, X. W.; Wong, C. P., Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. Journal of Energy Chemistry 2021, 52, 377-384.
46. Yang, H. J.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X. W.; He, P.; Zhou, H. S., Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angew Chem Int Edit 2020, 59 (24), 9377-9381.
47. Zhang, Y. J.; Wang, G. Y.; Yu, F. F.; Xu, G.; Li, Z.; Zhu, M.; Yue, Z. J.; Wu, M. H.; Liu, H. K.; Dou, S. X.; Wu, C., Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem Eng J 2021, 416.
48. Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat Commun 2020, 11 (1).
49. Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q., Recent Advances in Aqueous Zinc-Ion Batteries. Acs Energy Lett 2018, 3 (10), 2480-2501.
50. Knight, J. C.; Therese, S.; Manthiram, A., On the Utility of Spinel Oxide Hosts for Magnesium-Ion Batteries. Acs Appl Mater Inter 2015, 7 (41), 22953-22961.
51. Knight, J. C.; Therese, S.; Manthiram, A., Chemical extraction of Zn from ZnMn2O4-based spinels. J Mater Chem A 2015, 3 (42), 21077-21082.
52. Lai, J. W.; Zhu, H. H.; Zhu, X. P.; Koritala, H.; Wang, Y., Interlayer-Expanded V6O13 center dot nH(2)O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery. Acs Appl Energ Mater 2019, 2 (3), 1988-1996.
53. Lin, M. X.; Shao, F. Q.; Tang, Y.; Lin, H. J.; Xu, Y. C.; Jiao, Y.; Chen, J. R., Layered Co doped MnO2 with abundant oxygen defects to boost aqueous zinc-ion storage. J Colloid Interf Sci 2022, 611, 662-669.
54. Zhu, X. Q.; Wu, Y. T.; Lu, Y. Z.; Sun, Y. Y.; Wu, Q.; Pang, Y. J.; Shen, Z. H.; Chen, H., Aluminum-doping-based method for the improvement of the cycle life of cobalt-nickel hydroxides for nickel-zinc batteries. J Colloid Interf Sci 2021, 587, 693-702.
55. Kim, S.; Koo, B. R.; Jo, Y. R.; An, H. R.; Lee, Y. G.; Huang, C.; An, G. H., Defect engineering via the F-doping of beta-MnO2 cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries. J Mater Chem A 2021, 9 (32), 17211-17222.
56. Li, Q.; Wei, T. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X., Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V10O24 center dot 12H(2)O Cathode Materials. Acs Appl Mater Inter 2019, 11 (23), 20888-20894.
57. Wu, X. W.; Xiang, Y. H.; Peng, Q. J.; Wu, X. S.; Li, Y. H.; Tang, F.; Song, R. C.; Liu, Z. X.; He, Z. Q.; Wu, X. M., Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A 2017, 5 (34), 17990-17997.
58. Han, S. D.; Kim, S.; Li, D. G.; Petkov, V.; Yoo, H. D.; Phillips, P. J.; Wang, H.; Kim, J. J.; More, K. L.; Key, B.; Klie, R. F.; Cabana, J.; Stamenkovic, V. R.; Fister, T. T.; Markovic, N. M.; Burrell, A. K.; Tepavcevic, S.; Vaughey, J. T., Mechanism of Zn Insertion into Nanostructured delta-MnO2: A Nonaqueous Rechargeable Zn Metal Battery. Chem Mater 2017, 29 (11), 4874-4884.
59. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P.; Mueller, K. T.; Liu, J., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 2016, 1.
60. Chamoun, M.; Brant, W. R.; Tai, C. W.; Karlsson, G.; Noreus, D., Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater 2018, 15, 351-360.
61. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J Am Chem Soc 1958, 80 (6), 1339-1339.
62. Wu, B. K.; Zhang, G. B.; Yan, M. Y.; Xiong, T. F.; He, P.; He, L.; Xu, X.; Mai, L. Q., Graphene Scroll-Coated alpha-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. Small 2018, 14 (13).
63. Islam, S.; Alfaruqi, M. H.; Song, J.; Kim, S.; Pham, D. T.; Jo, J.; Kim, S.; Mathew, V.; Baboo, J. P.; Xiu, Z.; Kim, J., Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. Journal of Energy Chemistry 2017, 26 (4), 815-819.
64. Fang, G. Z.; Zhu, C. Y.; Chen, M. H.; Zhou, J.; Tang, B. Y.; Cao, X. X.; Zheng, X. S.; Pan, A. Q.; Liang, S. Q., Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy-Density and Durable Aqueous Zinc-Ion Battery. Adv Funct Mater 2019, 29 (15).
65. Zhang, D. D.; Cao, J.; Yue, Y. L.; Pakornchote, T.; Bovornratanaraks, T.; Han, J. T.; Zhang, X. Y.; Qin, J. Q.; Huang, Y. H., Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries. Acs Appl Mater Inter 2021, 13 (32), 38416-38424.
66. Soundharrajan, V.; Sambandam, B.; Kim, S.; Mathew, V.; Jo, J.; Kim, S.; Lee, J.; Islam, S.; Kim, K.; Sun, Y. K.; Kim, J., Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn2O4 Cathode. Acs Energy Lett 2018, 3 (8), 1998-2004.
67. Kundu, D.; Vajargah, S. H.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energ Environ Sci 2018, 11 (4), 881-892.
68. Han, F. D.; Yue, J.; Fan, X. L.; Gao, T.; Luo, C.; Ma, Z. H.; Suo, L. M.; Wang, C. S., High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. Nano Lett 2016, 16 (7), 4521-4527.
69. Zhang, Q.; Cai, L. T.; Liu, G. Z.; Li, Q. H.; Jiang, M.; Yao, X. Y., Selenium-Infused Ordered Mesoporous Carbon for Room-Temperature All-Solid-State Lithium-Selenium Batteries with Ultrastable Cyclability. Acs Appl Mater Inter 2020, 12 (14), 16541-16547.
70. Ding, N.; Chen, S. F.; Geng, D. S.; Chien, S. W.; An, T.; Hor, T. S. A.; Liu, Z. L.; Yu, S. H.; Zong, Y., Tellurium@Ordered Macroporous Carbon Composite and Free-Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium-Tellurium Batteries. Adv Energy Mater 2015, 5 (8).
71. Quan, B.; Jin, A.; Yu, S. H.; Kong, S. M.; Jeong, J.; Abruna, H. D.; Jin, L. Y.; Piao, Y.; Sung, Y. E., Solvothermal-Derived S-Doped Graphene as an Anode Material for Sodium-lon Batteries. Adv Sci 2018, 5 (5).
72. Zhou, J. Q.; Qian, T.; Xu, N.; Wang, M. F.; Ni, X. Y.; Liu, X. J.; Shen, X. W.; Yan, C. L., Selenium-Doped Cathodes for Lithium-Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency. Adv Mater 2017, 29 (33).
73. Huang, G.; Li, Q.; Yin, D. M.; Wang, L. M., Hierarchical Porous Te@ZnCo2O4 Nanofibers Derived from Te@Metal-Organic Frameworks for Superior Lithium Storage Capability. Adv Funct Mater 2017, 27 (5).
74. Yuksel, R.; Buyukcakir, O.; Seong, W. K.; Ruoff, R. S., Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries. Adv Energy Mater 2020, 10 (16).
75. Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q., Electrochemically Induced Metal-Organic-Framework-Derived Amorphous V2O5for Superior Rate Aqueous Zinc-Ion Batteries. Angew Chem Int Edit 2020, 59 (49), 22002-22006.
76. Zhong, G. H.; Liu, D. X.; Zhang, J. Y., Applications of Porous Metal-Organic Framework MIL-100(M) (M = Cr, Fe, Sc, Al, V). Cryst Growth Des 2018, 18 (12), 7730-7744.
77. Zakharova, G. S.; Thauer, E.; Enyashin, A. N.; Deeg, L. F.; Zhu, Q.; Klingeler, R., V2O3/C composite fabricated by carboxylic acid-assisted sol-gel synthesis as anode material for lithium-ion batteries. J Sol-Gel Sci Techn 2021, 98 (3), 549-558.
78. Chen, H. Z.; Rong, Y.; Yang, Z. H.; Deng, L.; Wu, J., V2O3@Amorphous Carbon as a Cathode of Zinc Ion Batteries with High Stability and Long Cycling Life. Ind Eng Chem Res 2021, 60 (4), 1517-1525.
79. He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Q., Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode. Adv Energy Mater 2017, 7 (11).
80. Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Islam, S.; Pham, D. T.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; Lee, K. S.; Sun, Y. K.; Kim, J., Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chem Mater 2017, 29 (4), 1684-1694.
81. Cao, H. L.; Zheng, Z. Y.; Norby, P.; Xiao, X. X.; Mossin, S., Electrochemically Induced Phase Transition in V3O7 center dot H2O Nanobelts/Reduced Graphene Oxide Composites for Aqueous Zinc-Ion Batteries. Small 2021, 17 (24).
82. Wen, C. J.; Boukamp, B. A.; Huggins, R. A.; Weppner, W., Thermodynamic and Mass-Transport Properties of Lial. J Electrochem Soc 1979, 126 (12), 2258-2266.
83. Wang, J.; Polleux, J.; Lim, J.; Dunn, B., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 2007, 111 (40), 14925-14931.
校內:2027-08-22公開