簡易檢索 / 詳目顯示

研究生: 王柏凱
Wang, Bo-Kai
論文名稱: 鐵錳鋁合金之高速撞擊與破壞行為研究
A Study in the Impact Deformation and Fracture Behaviour of Fe-Mn-Al Alloy
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 110
中文關鍵詞: 絕熱剪切帶SHPB鐵錳鋁合金
外文關鍵詞: adbaitic shear band, Fe-Mn-Al alloy, SHPB
相關次數: 點閱:128下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要是利用霍普金森高速撞擊試驗機,來探討鐵錳鋁合金於高速撞擊下之破壞行為。本實驗是在測試溫度為25 ,應變速率分別為2000 s-1、3780 s-1、5760 s-1、8000 s-1下,將實驗所得到數據和微觀結果(OM、SEM)做分析,用來研究應變速率對鐵錳鋁合金之動態機械特性及其相對微觀組織變化之影響,最後再引用一合適之材料構成方程式,來描述鐵錳鋁合金在高速撞擊下之塑變行為,以做為工程模擬與分析之用。
      由實驗的數據分析,可知鐵錳鋁合金之動態機械性質受到應變速率和應變量之影響甚鉅。在相同應變量下,應變速率增加,其塑流應力值、加工硬化係數、加工硬化率及應變速率敏感性係數隨之上升,而熱活化體積則有相反之趨勢。且在相同應變速率下,隨著應變量增加,塑流應力值及應變速率敏感性係數有上昇之現象,加工硬化率及熱活化體積則有相反之趨勢。同時,從破壞形貌觀察,可以知道在高速變形下鐵錳鋁合金之破壞模式為絕熱剪切模式,高速撞擊下可觀察到材料內部產生除了主裂縫外的絕熱剪切帶,以及剪切帶所造成試件內部的微裂縫相互連結,因而造成材料破壞之現象;在破斷面觀察上,可以發現到節點及劈裂面是主要的形貌分佈,故屬於脆性破壞,而隨著應變速率的增加,節點形貌會有不同的改變且劈裂面積增加。最後,藉由Zerilli-Armstrong模式之構成方程式,及其配合本實驗所得之材料參數,可以準確的描述鐵錳鋁合金於高速撞擊下之塑變行為。

      This study uses the split-Hopkinson pressure bar to investigate the impact deformation and fracture behaviour of Fe-Mn-Al alloy at strain rates of 2000 s-1, 3780 s-1, 5760 s-1 and 8000 s-1 at room temperature. OM and SEM microscopy techniques are employed to analyze the fracture and microstructure characteristics of the deformed specimens in order to establish the relationships between the mechanical and the microstructural properties of the alloy. The experimental results indicate that both strain and strain rate influence the mechanical properties of the Fe-Mn-Al alloy. Under constant strain, the flow stress, work hardening coefficient, work hardening rate and strain rate sensitivity increase with increasing strain rate, while the activation volume decreases. Meanwhile, under constant strain rate, the flow stress and strain rate sensitivity increase with increasing strain, while the activation volume and work hardening rate decrease. Fractographic analysis reveals that the fracture is dominated by adiabatic shear band formation. Furthermore, dimple characteristics and cleavage facets are observed on the fracture surfaces. It is found that cleavage facture occurs more frequently with increasing strain rate. Finally, it is shown that the Zerilli-Armstrong constitutive equation with the experimentally determined specific material parameters successfully describes the flow behaviour of Fe-Mn-Al alloy under the current test conditions.

    中文摘要 I ABSTRACT II 總 目 錄 III 表 目 錄 VI 圖 目 錄 VII 符 號 說 明 表 XIV 第一章 緒 論 1 1-1研究動機 1 1-2研究背景與範疇 2 第二章 理論與文獻回顧 5 2-1鐵錳鋁合金性質介紹 5 2-1-1鐵錳鋁合金之製造方法 5 2-1-2合金成分之影響 6 2-1-3鐵錳鋁合金之強化機構 7 2-1-4抗腐蝕性 8 2-2一維波傳理論 9 2-2-1一維波傳方程式之通解 9 2-2-2 一維波傳在兩種不同材料介面之反射及穿透 11 2-3霍普金森桿原理 13 2-4波散之形成 15 2-5離散傅立業轉換對霍普金森桿試驗之波散消除原理 7 2-6材料塑性變形行為之特性 19 2-7塑性變形之機械測試類別 22 2-8圓柱壓縮試驗法 23 2-9材料變形構成方程式 24 第三章 實驗方法與步驟 34 3-1實驗流程 34 3-2實驗儀器與設備 34 3-2-1霍普金森動態撞擊試驗機 34 3-2-2訊號處理裝置 35 3-2-3萬能試驗機 35 3-2-4光學顯微鏡(OM) 36 3-2-5掃瞄式電子顯微鏡(SEM) 36 3-2-6鑽石刀片試片切割機 36 3-3實驗方法與步驟 36 3-3-1壓縮試件備製 36 3-3-2動態衝擊實驗 37 3-3-3靜態壓縮試驗 38 3-3-4修正波形 39 3-3-5試件金相之觀察(OM) 40 3-3-6破斷面之觀察(SEM) 40 第四章 實驗結果與討論 48 4-1 應力-應變曲線圖之討論 48 4-2應變速率效應 49 4-3熱活化體積 50 4-4理論溫升量之探討 52 4-5材料構成方程式 53 4-6微觀組織 53 4-6-1晶粒變化與絕熱剪切帶形成 53 4-6-2破壞特微分析 56 第五章 結論 101 參考文獻 102

    1. R. A. Hadfield, “Procres of Making Steel Containing Carbon, manganese and Aluminum,” United States Patent, No.422, 1890.

    2. D. J. Schmatz, “Structure and properties of Austenitic Allogs Containing Aluminum and Silicon,” ASM-Transactions, Vol. 52, p898, 1960.

    3. 劉增豐, 鐵錳鋁合金研究發展總計畫, NSC77-0201-E009- 002R, 1988年。

    4. R. Wang and F. H. Beck, “New Stainless Steel without Nickel or Chromium for Marine Applications,” Metal Progress, Vol. 123, No. 4, p72, pp. 74-76, 1983.

    5. 歐耿良、趙志燁,「鐵-10鋁-30錳-1.0碳的合金鑄件之切削性」,鑄工第二十四卷三期,第110-117頁,1988.

    6. Y. B. Xu, Y. L. Bai, Q. Xue and L. T. Shen, “Formation Microstructure and Development of the Localized Shear Deformation in Low Carbon Steels,” Acta Materialia, Vol. 44, pp. 1917-1926, 1996.

    7. J. Harding, E. D.Wood and Campbell, “Tensile Testing of Material at Impact Rates of Strain,” Journal of Mechanical Engineering Science, Vol. 2, pp. 88-96, 1960.

    8. A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity,” Dover Publications, 1944.

    9. U. S. Lindholm and L. M. Yeakley, “High Strain Rate Testing: Tension and Compression,” Experimental Mechanics, Vol. 8, pp. 1-9, 1968.

    10. T. Nicholas, “Tensile Testing of Materials at High Rates of Strain,” Experimental Mechanics, Vol. 21, pp. 177-185, 1980.

    11. P. S. Follansbee and C. Frantz, “Wave Propagation in the Split Hopkinson Pressure Bar,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 105, No. 1, pp. 61-66, 1983.

    12. J. P. Joule, Philosophical Transactions of The Royal Society, London, Vol. 149, pp. 91-131, 1859.

    13. J. Duffy and Y. C. Chi, “On the Measurement of Local Strain and Temperature during the Formation of Adiabatic Shear Bands,” Materials Science and Engineering, Vol. A157, pp. 195-210, 1992.

    14. S. C. Liao and J. Duffy, “Adiabatic Shear Bands in a Ti-6Al-4V Titanium Alloy,” Journal of the Mechanics and Physics of Solids, Vol. 46, No. 11 pp. 2201-2231, 1998.

    15. K. A. Hartley, J. Duffy and R. H. Hawley, “Measurement of the Temperature Profile during Shear Band Formation in Steels Deforming at High Strain Rates,” Journal of the Mechanics and Physics of Solids, Vol. 35, No. 3, pp. 283-301, 1987.

    16. A. Marchand and J. Duffy, “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel,” Journal of Mechanical Physical Solids, Vol. 36, No. 3, pp. 251-283, 1988.

    17. Y. B. XU, Y. L. Bai, Q. Xue and L. T. Shen, “Formation, Microstructure and Development of the Localized Shear Deformation in Low-carbon Steels,” Acta Materialia, Vol. 44, No. 5, pp. 1917-1926, 1996.

    18. T. F. Liu and C. C. Wu, “The Orientation Relationship Between A13 beta -Manganese and Ferrite,” Scripta Materialia, Vol.23, pp. 1243-1248, 1989.

    19. T. F. Liu and C. C. Wu, “Beta-Mn Structure in an Fe-Al-Mn-Cr Alloy,” Scripta Materialia, Vol.23, pp. 1087-1092, 1989.

    20. C. C. Wu and T. F. Liu, “A New Phase in an Fe-9.0Al-29.5Mn- 1.2Si Alloy,” Metallurgical Transactions A, Vol. 22, pp. 1417-1423, 1991.
    21. T. F. Liu, G. C. Uen, C. Y. Chao, Y. L. Lin and C. C. Wu,” Phase Transformation in an Fe-9.0Al-29.5Mn-1.2Si Alloy,” Metallurgical Transactions A, Vol. 22, pp. 1407-1415, 1991.

    22. C. J Lin, J. G. Duh and M. T. Liao, ”Influence of Weld Parameters on the Mechanical Properties of Spot-Welded Fe-Mn-Al-Cr Alloy,” Journal of Materials Science, Vol. 28, pp. 4767-4774, 1993.

    23. G. L. Kayak, Metal Science and Heat Treatment, Vol. 11, No. 2, pp. 95-97, 1969.

    24. J. Charles and A. Berghezan, “Nickel-free Austenitic for Cryogenic Applications: the Fe-23Mn-5Al-0.2C Alloys”, Cryogenics, Vol. 21, No. 5, pp. 278-280, 1981.

    25. R. Wang and R. G. Wallwork, in “Alternate Alloying for Environmental Resistance,” G. R. Smolik and S. K. Banerji, The Metallurgical Scoiety Inc., p. 363, 1987.

    26. 萬其明、賴宏仁,「鐵錳鋁合金中強化機構之研究」,博士論文,新竹,1989

    27. Y. G. Kim, Y. S. Park and J. K. Han, “Low Temperature Mechanical Behaviour of Microalloyed and Contolled-Rolled Fe-Mn-Al-C-X Alloys,” Metallurgical and Materials Transactions A, 16A, pp. 1689-1693, 1985.

    28. S. C. Chang and Y. H. Hsiau, “Tensile and Fatigue Properties of Fe-Mn-Al-C Alloys,” Journal of Materials Science, Vol. 24, No.3, pp. 1117-1120, 1989.

    29. A. Inoue, Y. Kojima, T. Minemura and T. Masumoto, “Microstructure and Mechanical Properties of Ductile Ni3Al-type Compound in Fe-(Ni, Mn)-Al-C Systems Rapidly Quenched from Melts,” Metallurgical and Materials Transactions A, Vol. 12A, No. 7, pp. 1245-1253, 1981.

    30. R. E. Cairns and J. L. Ham, “Aluminum-Managanese-Iron Alloys,” United State Patent, No. 3111405, 1963.

    31. C. Y. Chao, C. N. Hwang and T. F. Liu, “Grain Boundary Precipitation in an Fe-7.8Al-31.7Mn-0.54C Alloy,” Scripta Materialia, Vol. 28, No. 1, pp.109-114, 1993.

    32. C. N. Hwang, C. Y. Chan and T. F. Liu, “Grain Boundary Precipitation in an Fe-8.0Al-31.5Mn-1.05C Alloy,” Scripta Materialia, Vol. 28, No. 2, pp.263-268, 1993.

    33. 吳忠春、趙志燁、黃志能、劉增豐,「合金元素對鐵錳鋁碳合金鑄件顯微結構的影響」,鑄工第23卷第1期,第21-29頁, 1997.

    34. S. C. Chang, J. Y. Liou, C. M. Wan and T. F. Liu, “The Corrosion Properties of Fe-Mn-Al Alloys,” Proc. Symposium on Altenate Alloying for Enviormental Resistance, AIME, Warrendale, pp. 381-388, 1986.

    35. J. B. Duh, W. T. Tsai, J. T. Lee, and H. Chang, “Effect of Potential on the Corrosion Fatigue Crack Growth Rate of Fe-Al-Mn Alloy in 3.5% NaCl Solution,” Corrosion, Vol. 46, No.12, pp. 983-988, 1990.

    36. J. B. Duh, W. T. Tsai and J. T. Lee, “Electrochemical and Corrosion Fatigue Behavior of Fe-Al-Mn Alloys in NaCl Solution,” Corrosion, Vol. 44, pp. 810-817, 1988.

    37. J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing Company, 1984.

    38. U. S. Lindholm and L. W. Yeakly, “High strain rate tension and compression,” Experimental Mechanics, Vol. 3, pp. 81-88, 1983.

    39. M. A. Meyers, Elastic Waves, Dynamics behavior of materials, Jhon Wiely & Son, pp. 23-65, 1994.

    40. 錢偉長,彈性力學,亞東書局,1991年八月。

    41. Marc A. Meyers, Dynamic Behavior of Materials, A Wiley- Interscience Publication, 1994.

    42. Jonas A. Zukas, High Velocity Impact Dynamics, A Wiley- Interscience Publication, 1990.

    43. Jonas A. Zukas, Theodore Nicholas, Hallock F. Swift, Longin B. Greszczuk, and Donald R, Curran, Impact Dynamics, A Wiley- Interscience Publication, 1982.

    44. Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, Discrete-Time Signal Processong, Prentice Hall, 1999.

    45. J. D. Campbell, “Dynamic Plasticity-Macrosopic and Microscopic Aspects,” Material Science and Engineering, Vol. 12, pp. 3-21, 1973.

    46. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.

    47. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.

    48. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics, Vol. 38, No. 4, pp. 1863-1869, 1967.

    49. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, No. 4, pp. 1863-1869, 1967.

    50. J. D. Campbell and A. R. Dowling, “Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of the Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.

    51. R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications,” pp. 22-26, 1980.

    52. U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.

    53. G. E. Dieter, Workability Testing Techniques, pp. 57-59, Metals Park, Oh: ASM, 1984.

    54. M. L. Lovato, and M. G. Stout,
    “Compression Testing Techniques to Determine the Stress/Strain Behaviour of Metals Subject to Finite Deformation,” Metallurgical Transactions A, Vol. 23A, pp. 935-951, 1992.

    55. J. C. Gelin, J. Oudin, and Y. Ravalard, “Determination of the Flow Stress-Strain Curve for Metals form Axisymmeetric Upsetting,” Journal of Mechanical Working Technology, Vol. 5, pp. 297-308, 1981.

    56. Riqiang Liang and Akhtar S. Khan, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Metals over a Wide Range of Strain Rates and Temperature,” International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.

    57. W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.

    58. J. D. Campbell, A. M. Eleiche, and M. C. C. Tsao, “Fundamental Aspects of Structural Alloy Design,” Plenum Publishing Corp. New York, pp. 545-563, 1977.

    59. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.

    60. F. J. Zerilli and R. W. Armstrong, “The Effect of Dislocation Drag on the Stress-Strain Behavior of F.C.C. Metals,” Acta Metallurgica et Materialia, Vol. 40, No. 8, pp.1803-1808, 1992.

    61. F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Meatls and High Strength Alloy Steels,” High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, ASME 1995.

    62. G. E. Dieter, “Thermally Activated Deformation,” Mechanical Metallurgy, pp. 310-315, 1988.

    63. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, Oxford, pp. 1-3, 1992.

    64. Emin Bayraktar and Sabri Altintas, “Some Problems in Steel Sheet Forming Processes,” Journal of Materials Processing Technology, Vol. 9, No. 8, pp. 686-690, 1993.

    65. M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, “Scaling Rules for Adiabatic Shear,” in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L. E. Murr, K. K. Staudhammer and M. A. Meyers) pp. 675-688, Marcel Dekker Inc., New York, 1986.

    下載圖示 校內:2005-07-12公開
    校外:2005-07-12公開
    QR CODE