簡易檢索 / 詳目顯示

研究生: 陳欣正
Chen, Hsin-Cheng
論文名稱: 光學式手部運動追蹤系統之研製
Development of a 3D Optical Hand Model Motion Tracking System
指導教授: 蔡明俊
Tsai, Ming-June
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 130
中文關鍵詞: 運動追蹤器逆向運動學關節軸找尋法掌部模型
外文關鍵詞: Inverse kinematics, Joint axis, Hand model, Motion Tracker
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文建構一運動追蹤器(Motion Tracker),包含光學設計、電路實作、組裝、校正。引入普朗克座標系(Plücker Coordinate)空間線幾何之概念建立空間定位之數學方法,將此方法應用於系統校正、及標誌點定位方法。本文將提出校正方法之修正方案以及引入線幾何模型之校正方法,進行實驗並分析其結果。

    本文亦建構一掌部模型,並設計螺旋運動軸之找尋方法,利用模擬雜訊的方式測試該方法之穩定性,最後再挑選適合的器材進行掌部關節軸之找尋。具運動軸之掌部模型有22個自由度,手掌具有1個自由度;拇指具有5個自由度;其餘手指則各有4個自由度。在單一關節軸尋找方面,由於人體關節非單純的旋轉運動。把每一個關節分三個位置掃描經基礎點對正後,找出三個相對運動螺旋軸。為簡化關節軸模型再以MODS方法找出各關節運動範圍內最佳運動螺旋軸代表該關節軸。

    為利用運動追蹤器擷取掌部運動並於掌部模型重現運動,因此建立傳統逆向運動學計算方法與簡化後之幾何解法以計算運動軸關節角。亦比較各式順向運動學方法,利用較具效率之方法重現掌部模型之運動。最後提出點資料後處理方法求得較平順之掌部運動,並記錄掌部運動,未來便能重現或編修該運動。

    The purpose of this study is focused on the development of a real time hand model tracking system. The tracking system uses optical sensors and IRLED markers. Plücker Coordinate is employed to represent the lines in the Calibration and 3D position calculation process. This method is revised from the previous point based method and can improve the precision of the system.

    The study uses screw axis to create a real hand model. In order to accurately estimate the joint axis of the hand model, Over-determined method is used to find the locations of individual screw axis, for three positions within the motion range. To simplify the joint model, an optimal screw axis is obtained by a MODS method. In this study, hand model has 22 degrees of freedom. There is a joint in the palm, 5 joints in the thumb, and 4 joints in every other finger. The relationship between the hand model and the joint axes is registration parametrically. Therefore the motion of one’s can be able to be replayed by different hand model easily.

    The study also considers a technique for computation of the forward and inverse kinematics of the human hand model. The study provides two methods to solve kinematic issue. One is the common inverse kinematics model that is modified to incorporate screw axes. The other is a specialized geometric inverse method that is suitable human fingers. Using the specified kinematic model, we can implement real-time tracking, motion recording, and motion editing functions in the tracking system.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XI 第一章 序論 1 1-1 研究動機及目的 1 1-2 文獻回顧 3 1-3 本文架構 6 第二章 系統架構 9 2-1 光路設計 9 2-2 硬體設備 16 2-2-1 中央控制板 (CCU) 17 2-2-2 發光二極體驅動板 (LED Driver) 21 2-2-3 CCD 控制板 22 2-3 旋轉座的設計與製作 25 第三章 系統校正 31 3-1 鏡頭成像扭曲校正數學模型 31 3-2 鏡頭成像扭曲校正實驗方法 34 3-3 鏡頭成像扭曲校正實驗結果與分析 36 3-4 取像原理及數學模型 41 3-5 系統參數最佳化方法 47 3-5-1 36參數之最佳化 48 3-5-2 27參數之最佳化 50 3-6 系統參數最佳化實驗方法 53 3-7 系統參數最佳化實驗結果與分析 55 第四章 人體掌部關節軸實驗 59 4-1 最佳化運動螺旋軸之找尋方法 59 4-1-1 數學模型描述 59 4-1-2 實驗驗證 64 4-2 搜尋關節軸實驗 67 4-2-1 實驗配置及其方法 68 4-2-2 手指關節軸搜尋 74 4-2-3 手指最佳關節軸搜尋 80 4-2-4 拇指及手掌關節軸搜尋 85 第五章 掌部運動學 89 5-1 標誌點設置與光學定位手套製作 89 5-2 逆向運動學推導 92 5-2-1 二軸骨架D-H法逆向運動學 93 5-2-2 三軸骨架D-H法逆向運動學 96 5-2-3 手部骨架幾何逆向運動學 102 5-3 順向運動學 106 第六章 手掌運動之編碼與重現 109 6-1 點資料處理 109 6-2 即時手部運動追蹤與模型顯示 115 第七章 結論與建議 119 7-1 研究成果 119 7-2 討論及建議 121 參考文獻 124 自述 130

    1. Schulz, W.A., Method and Apparatus for Three-Dimensional Non-Contact Shape Sensing, in US Patent. 1993.
    2. Schulz, W.A., Apparatus for determining the position and orientation of an invasive portion of a probe inside a three-dimensional body, in US Patent. 1997.
    3. Schulz, W.A., System for locating relative positions of objects in three dimensional space, in US Patent. 1999.
    4. Schulz, W.A., Determination of the position and orientation of at least one object in space, in US Patent. 2002.
    5. Voronka, Optical Body Tracker, in US Patent. 2004.
    6. NorthernDigitalInc. Optotrak Certus. 2007 [cited; Available from: http://www.ndigital.com.
    7. PhoenixTechnologiesInc. Visualeyez. 2007 [cited; Available from: http://www.ptiphoenix.com/.
    8. 林東穎, 使用數位訊號處理器與光感測器進行三維位置量測, in 機械工程學系. 2004, 國立成功大學: 台南.
    9. 謝嘉全, 光學式三維人體運動追蹤器之研發, in 機械工程學系. 2004, 國立成功大學: 台南.
    10. Lau, P., Automatic Calibration Process of a 3D Optoelectronic Tracking System, in Mechanical Engineering. 2005, National Cheng Kung University: Tainan, Taiwan.
    11. 郭中復, 光電三維運動追蹤器同步問題之研究 in 機械工程學系. 2006, 國立成功大學: 台南.
    12. 陳侑群, 光電式人體運動追蹤器主從式架構之研究, in 機械工程學系. 2007, 國立成功大學: 台南.
    13. Rijpkema, H. and M. Girard, Computer animation of knowledge-based human grasping. ACM SIGGRAPH Computer Graphics, 1991. 25(4): p. 339-348.
    14. Schultz, R.J., A. Storace, and S. Krishnamurthy, Metacarpophalangeal joint motion and the role of the collateral ligaments. International Orthopaedics, 1987. 11(2): p. 149-155.
    15. Lee, J. and T.L. Kunii, Model-based analysis of hand posture. Computer Graphics and Applications, IEEE, 1995. 15(5): p. 77-86.
    16. McDonald, J., et al., An improved articulated model of the human hand. The Visual Computer, 2001. 17(3): p. 158-166.
    17. van Nierop, O.A., et al., A natural human hand model. The Visual Computer, 2008. 24(1): p. 31-44.
    18. Gamage, S. and J. Lasenby, New least squares solutions for estimating the average centre of rotation and the axis of rotation. Journal of Biomechanics, 2002. 35(1): p. 87-93.
    19. Chang, L.Y. and N.S. Pollard, Constrained least-squares optimization for robust estimation of center of rotation. Journal of Biomechanics, 2007. 40(6): p. 1392-1400.
    20. Chang, L.Y. and N.S. Pollard, Robust estimation of dominant axis of rotation. Journal of Biomechanics, 2007. 40(12): p. 2707-2715.
    21. Cerveri, P., et al., Derivation of Centers and Axes of Rotation for Wrist and Fingers in a Hand Kinematic Model: Methods and Reliability Results. Annals of Biomedical Engineering, 2005. 33(3): p. 402-412.
    22. Eberharter, J. and B. Ravani, A THREE DIMENSIONAL GENERALIZATION OF REULEAUX’S METHOD BASED ON LINE GEOMETRY, in CD ROM Proceedings of ASME International Design Engineering Technical Conference. 2006 Philadelphia, Pennsylvania.
    23. Kiat Teu, K. and W. Kim, Estimation of the axis of a screw motion from noisy data—A new method based on Plucker lines. Journal of Biomechanics, 2006. 39(15): p. 2857-2862.
    24. Sheehan, F.T., The finite helical axis of the knee joint (a non-invasive in vivo study using fast-PC MRI). Journal of Biomechanics, 2007. 40(5): p. 1038-1047.
    25. Baumberg, A.M. and D.C. Hogg, An efficient method for contour tracking using active shape models. Motion of Non-Rigid and Articulated Objects, 1994., Proceedings of the 1994 IEEE Workshop on, 1994: p. 194-199.
    26. Freeman, W.T., et al., Computer vision for computer games. Automatic Face and Gesture Recognition, 1996., Proceedings of the Second International Conference on, 1996: p. 100-105.
    27. Wren, C.R., et al., Pfinder: Real-Time Tracking of the Human Body. 1997.
    28. Howe, N., M. Leventon, and W. Freeman, Bayesian reconstruction of 3d human motion from single-camera video. Neural Information Processing Systems, 1999. 1999.
    29. Lee, S.U. and I. Cohen, 3D hand reconstruction from a monocular view. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004. 3.
    30. Hillebrand, G., et al., Inverse Kinematic Infrared Optical Finger Tracking.
    31. El-Sawah, A., N.D. Georganas, and E.M. Petriu, Finger Inverse Kinematics Using Error Model Analysis for Gesture Enabled Navigation in Virtual Environments. Haptic Audio Visual Environments and their Applications, 2006. HAVE 2006. IEEE International Workshop on, 2006: p. 34-39.
    32. El-Sawah, A., et al., A Framework for 3D Hand Tracking and Gesture Recognition using Elements of Genetic Programming. Proceedings of the Fourth Canadian Conference on Computer and Robot Vision, 2007: p. 495-502.
    33. Dorfmuller-Ulhaas, K. and D. Schmalstieg, Finger tracking for interaction in augmented environments. Augmented Reality, 2001. Proceedings. IEEE and ACM International Symposium on, 2001: p. 55-64.
    34. Zhang, X., S.W. Lee, and P. Braido, Determining finger segmental centers of rotation in flexion–extension based on surface marker measurement. Journal of Biomechanics, 2003. 36(8): p. 1097-1102.
    35. Zhang, X., S.W. Lee, and P. Braido, Towards an integrated high-fidelity linkage representation of the human skeletal system based on surface measurement. International Journal of Industrial Ergonomics, 2004. 33(3): p. 215-227.
    36. Veber, M., T. Bajd, and M. Munih, Assessing joint angles in human hand via optical tracking device and calibrating instrumented glove. Meccanica, 2007. 42(5): p. 451-463.
    37. Mihelj, M., Inverse Kinematics of Human Arm Based on Multisensor Data Integration. Journal of Intelligent and Robotic Systems, 2006. 47(2): p. 139-153.
    38. Courses, E. and T. Surveys, Reliable Model-based Kinematics Analysis System for Articulated Fingers. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007: p. 4675-4678.
    39. Degeorges, R., et al., Three-dimensional rotations of human three-joint fingers: an optoelectronic measurement. Preliminary results. Surgical and Radiologic Anatomy, 2005. 27(1): p. 43-50.
    40. Kolahi, A., et al., Design of a marker-based human motion tracking system. Biomedical Signal Processing and Control, 2007. 2(1): p. 59-67.
    41. Kurihara, T. and N. Miyata, Modeling deformable human hands from medical images. Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2004: p. 355-363.
    42. Lee, J., S.H. Yoon, and M.S. Kim, Realistic human hand deformation. Computer Animation and Virtual Worlds, 2006. 17(3-4): p. 479-489.
    43. Park, S.I. and J.K. Hodgins, Capturing and animating skin deformation in human motion. International Conference on Computer Graphics and Interactive Techniques, 2006: p. 881-889.
    44. Rhee, T., U. Neumann, and J.P. Lewis, Human hand modeling from surface anatomy. Proceedings of the 2006 symposium on Interactive 3D graphics and games, 2006: p. 27-34.
    45. Dorner, B. and E. Hagen, Towards an American Sign Language interface. Artificial Intelligence Review, 1994. 8(2): p. 235-253.
    46. Jaffe, D.L., Evolution of mechanical fingerspelling hands for people who are deaf-blind. J Rehabil Res Dev, 1994. 31(3): p. 236-44.
    47. Ip, H.H.S., et al., Animation of hand motion from target posture images using an anatomy-based hierarchical model. Computers & Graphics, 2001. 25(1): p. 121-133.
    48. Oz, C. and M.C. Leu, Linguistic properties based on American Sign Language isolated word recognition with artificial neural networks using a sensory glove and motion tracker. Neurocomputing, 2007. 70(16-18): p. 2891-2901.
    49. Tai, E., Design of an Anthropomorphic Robotic Hand for Space Operations. 2007, Maryland.
    50. Carrozza, M.C., et al., Design of a cybernetic hand for perception and action. Biological Cybernetics, 2006. 95(6): p. 629-644.
    51. Zhang, L., et al., Humanoid Motion Design Considering Rhythm Based on Human Motion Capture. Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, 2006: p. 2491-2496.
    52. Hamamatsu, Infrared LED L1939 series. 2001.
    53. EdmundOptics. Optics SQ 780 nm. 2008 [cited; Available from: http://www.edmundoptics.com/onlineCatalog/DisplayProduct.cfm?productid=1512&StartRow=61&PageNum=4.
    54. Sony, ILX554B data sheet. 2002.
    55. Cypress, GPIF Primer. 2003.
    56. Cypress, EZ-USB Technical Reference Manual. 2002.
    57. Averlogic, AL440B data sheet. 2003.
    58. Averlogic, AL442B data sheet. 2004.
    59. SanyoDenki, 2 Phase Stepper Motor Catalog. 2002.
    60. Stein, G.P., Lens Distortion Calibration Using Point Correspondences. IEEE Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition, 1997.
    61. Gomes, F.A.M., M.C. Maciel, and J.M. Martinez, Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters. Math. Programming, 1999. 84 p. 161-200.
    62. Broyden, C.G., The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA Journal of Applied Mathematics, 1970. 6(1): p. 76-90.
    63. Fletcher, R., A new approach to variable metric algorithms. The Computer Journal, 1970. 13(3): p. 317-322.
    64. Goldfarb, D., A family of variable metric updates derived by variational means. Mathematics of Computing, 1970. 24(109): p. 23-26.
    65. Shanno, D.F., Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 1970. 24(111): p. 647-656.
    66. Neudecker, H. and J.R. Magnus, Matrix differential calculus with applications in statistics and econometrics. 1988, New York: John Wiley & Sons.
    67. 鄭秋隆, 自動化手部特徵萃取與手部模型之建立, in 國立成功大學. 2005, 機械工程學系: 台南.
    68. 呂宗翰, 頭部立體攝像機之研發與數位頭型之重建, in 機械工程學系. 2006, 國立成功大學: 台南.
    69. Chang, C.-W., et al. Reliable Model-based Kinematics Analysis System for Articulated Fingers. in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. 2007.
    70. Richard L. Burden, J.D.F., Numerical Analysis seven edition: Brooks/Cole.
    71. Boor, C.d., A Practical Guide to Splines. 1978: Springer-Verlag.

    下載圖示 校內:2018-07-23公開
    校外:2018-07-23公開
    QR CODE