| 研究生: |
黃沛靜 Huang, Pei-Jing |
|---|---|
| 論文名稱: |
整合投入產出分析開發產業供應鏈空污與碳排放資訊工具 Development of an integrated input-output analysis tool for assessing air pollution and carbon emissions across industries' supply chains |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 產業供應鏈 、環境投入產出分析 、環境衝擊資訊工具 、碳排基線 、環境外部成本 、碳定價 |
| 外文關鍵詞: | Industries’supply chain, Environmentally extended input-output analysis, Environmental impact information tool, Carbon emission baseline, Environmental external cost |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球減碳浪潮下,企業為避免受到永續績效市場競爭而淘汰,因此須進行碳盤查,爾後制定減碳轉型方針,但,企業低碳轉型上最先面對的一大問題就是沒有足夠的資金和技術,因此需向銀行申請轉型借貸或融資,若有金融端有足夠資料可判斷投資風險,將會加快整體產業供應鏈低碳轉型。
綜合企業和金融端在減碳浪潮下,遇到的幾大問題,第一點,台灣主要以中小型企業為主,難以負擔大型碳盤查機構所需的時間與費用,而無從制定企業減碳方針;第二點,在Schmidt等人的研究中提及約有70%的碳排來自於上下游之間的互動(範疇三),但大部分企業受數據缺漏和算法差異影響,無法完整揭露產業鏈的排放量;第三點,金融業在審批中小企業轉型貸款時,無參考的投資風險依據。
為此將建構一項簡易的互動式資訊工具,快速篩檢產業整體供應鏈的環境社會衝擊熱點和隱藏轉型風險。透過環境投入產出方法和排放係數法,兩者相互補足計算缺陷,估算產業供應鏈活動下的環境衝擊狀況,最終再將估算之環境危害值以貨幣化方式量化。此外,利用產業歷年碳排的趨勢外推法,提供個別企業制定具體減碳基線,且彙整當前各政府機關的公開數據資料,方便企業和金融端能夠輕鬆地獲取所需得企業永續轉型資訊。研究模型經驗證後,彙整出幾項結果(1)模型預估碳排和企業永續報告書中的碳排資料相比之下,可多估算出隱藏的排放量(包括碳排範疇三);(2)產業型態為製造業,最終估算的結果會接近預估之環境衝擊量,像是半導體中下游碳排實際值和估算值相差倍數落在0.5倍左右、鋼鐵業則落在2倍;(3)快篩系統可依產業結構,是否仰賴進出口,估算出貼近實際排放的結果,像批發及零售業透過開放經濟快篩模型其估算落差約0.2倍。
In the global drive for decarbonization, businesses are compelled to conduct carbon audits and devise decarbonization strategies to stay competitive in the sustainable performance market. However, the main challenge they face in their low-carbon transition is a lack of funds and technology. They need to seek transformation loans or financing from banks. Hence, they may struggle to provide comprehensive decarbonization plans for bank review.
This study aims to develop a simplified information tool that can rapidly assess the environmental and social impact hotspots of the industrial supply chain and provide investment risk assessment. The tool will employ environmental input-output analysis and emission coefficient methods to estimate the environmental impact hotspots of supply chain activities. The resulting environmental damages will be quantified in monetary terms. Additionally, the tool will utilize a trend extrapolation method to establish practical decarbonization targets for businesses. It will also consolidate publicly available data from government agencies to facilitate easy access to relevant information for businesses and the financial sector.
After validating the research model, the study identified several significant findings. (1) the model estimates higher emissions than the reported carbon emissions data by companies, revealing previously unrecognized emissions, including Scope 3 emissions. (2) in manufacturing industries, the estimated environmental impact closely corresponds to the expected impact. (3) the screening tool provides results that closely approximate actual emissions, considering industry characteristics and the dependence on imports and exports.
1. Acquaye, Feng, Oppon, Salhi, Ibn-Mohammed, Genovese, & Hubacek. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. J Environ Manage, 187, p.571-585. (2017).
2. Alexandre Sanches Garcia, & Orsato, Renato J. Testing the institutional difference hypothesis: A study about environmental, social, governance, and financial performance. Business Strategy and the Environment, 29(8), p.3261-3272. (2020).
3. Ali Murad Syed, & Ntim, Collins G. Environment, social, and governance (ESG) criteria and preference of managers. Cogent Business & Management, 4(1). (2017).
4. Amir Gholami, Murray, Peter A., & Sands, John. Environmental, Social, Governance & Financial Performance Disclosure for Large Firms: Is This Different for SME Firms? Sustainability, 14(10). (2022).
5. Amir Gholami, Sands, John, & Rahman, Habib Ur. Environmental, Social and Governance Disclosure and Value Generation: Is the Financial Industry Different? Sustainability, 14(5). (2022).
6. Anastasia Lobanova. The science behind spend-based emission factors. (2022).
7. Andreas Lichtenberger, Braga, Joao Paulo, & Semmler, Willi. Green Bonds for the Transition to a Low-Carbon Economy. Econometrics, 10(1), p.11. (2022).
8. Anne-Marie Tillman. Significance of decision-making for LCA methodology. J Environ Manage. (1999).
9. Arne Geschke, & Hadjikakou, Michalis. Virtual laboratories and MRIO analysis – an introduction. Economic Systems Research, 29(2), p.143-157. (2017).
10. Arnold Tukker, Bulavskaya, Tanya, Giljum, Stefan, de Koning, Arjan, Lutter, Stephan, Simas, Moana, Stadler, Konstantin, & Wood, Richard. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Global Environmental Change, 40, p.171-181. (2016).
11. Arnold Tukker, Wood, Richard, & Giljum, Stefan. Relevance of Global Multi Regional Input Output Databases for Global Environmental Policy: Experiences with EXIOBASE 3. Journal of Industrial Ecology, 22(3), p.482-484. (2018).
12. Arunima Malik, Egan, Matthew, du Plessis, Michael, & Lenzen, Manfred. Managing sustainability using financial accounting data: The value of input-output analysis. Journal of Cleaner Production, 293. (2021).
13. Bernhard Steubing, de Koning, Arjan, Merciai, Stefano, & Tukker, Arnold. How do carbon footprints from LCA and EEIOA databases compare? A comparison of ecoinvent and EXIOBASE. Journal of Industrial Ecology, 26, p.1406-1422. (2022).
14. Bin Su, Ang, B. W., & Liu, Yu. Multi-region input-output analysis of embodied emissions and intensities: Spatial aggregation by linking regional and global datasets. Journal of Cleaner Production, 313. (2021).
15. Brian C. O’Neill, Kriegler, Elmar, Riahi, Keywan, Ebi, Kristie L., Hallegatte, Stephane, Carter, Timothy R., Mathur, Ritu, & van Vuuren, Detlef P. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122(3), p.387-400. (2013).
16. BSI. BSI British Standard. Retrieved from https://www.bsigroup.com/. (2015).
17. Carbon Pricing Leadership Coalition. Report of the High-Level Commission on Carbon Pricing and Competitiveness.(2019).
18. Carbon Trust, Defra, Standards, BSI British, International, PE, Federation, Food and Drink, School, Manchester Business, Ltd, EuGeos, & Ltd, ADAS UK. Guide to PAS 2050: How to assess the carbon footprint of good and services, how to assess the carbon footprint of goods and services.(2008).
19. CDP. Transparency to Transformation: A Chain Reaction.(2020).
20. Chien-Chiang Lee, Wang, Fuhao, Lou, Runchi, & Wang, Keying. How does green finance drive the decarbonization of the economy? Empirical evidence from China. Renewable Energy, 204, p.671-684. (2023).
21. Chris Hendrickson, Horvath, A., Joshi, Satish, & Juarez-Espinosa, Octavio H. Economic Input-Output-Based Life-Cycle Assessment (EIO-LCA). (1998).
22. CPLC. Report of the High-Level Commission on Carbon Prices. Retrieved from https://www.carbonpricingleadership.org/report-of-the-highlevel-commission-on-carbon-prices. (2017).
23. Daniel Moran, & Wood, Richard. Convergence between the Eora, Wiod, Exiobase, and Openeu's Consumption-Based Carbon Accounts. Economic Systems Research, 26(3), p.245-261. (2014).
24. Dayong Zhang, Zhang, Zhiwei, & Managi, Shunsuke. A bibliometric analysis on green finance: Current status, development, and future directions. Finance Research Letters, 29, p.425-430. (2019).
25. Delavane Diaz, & Moore, Frances. Quantifying the economic risks of climate change. Nature Climate Change, 7(11), p.774-782. (2017).
26. Detlef P. van Vuuren, Edmonds, Jae, Kainuma, Mikiko, Riahi, Keywan, Thomson, Allison, Hibbard, Kathy, Hurtt, George C., Kram, Tom, Krey, Volker, Lamarque, Jean-Francois, Masui, Toshihiko, Meinshausen, Malte, Nakicenovic, Nebojsa, Smith, Steven J., & Rose, Steven K. The representative concentration pathways: an overview. Climatic Change, 109(1-2), p.5-31. (2011).
27. E. von Schneidemesser, Driscoll, C., Rieder, H. E., & Schiferl, L. D. How will air quality effects on human health, crops and ecosystems change in the future? Philos Trans A Math Phys Eng Sci, 378(2183), p.20190330. (2020).
28. Earth System Research Laboratories. Recent trends in global emissions: reflecting on the 2007 adjustments to the Montreal Protocol.(2015).
29. EDGAR G. HERTWICH, & PETERS, GLEN P. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environ. Sci. Technol, 43, p.6414–6420. (2009).
30. Eduardo Duque-Grisales, & Aguilera-Caracuel, Javier. Environmental, Social and Governance (ESG) Scores and Financial Performance of Multilatinas: Moderating Effects of Geographic International Diversification and Financial Slack. Journal of Business Ethics, 168(2), p.315-334. (2021).
31. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021.(2022).
32. EquatorPrinciples. THE EQUATOR PRINCIPLES.(2020).
33. Feng He, Qin, Shuqi, Liu, Yuanyuan, & Wu, Ji. CSR and idiosyncratic risk: Evidence from ESG information disclosure. Finance Research Letters, 49, p.102936. (2022).
34. Gunnar Friede, Busch, Timo, & Bassen, Alexander. ESG and financial performance: aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), p.210-233. (2015).
35. H. Orru, Ebi, K. L., & Forsberg, B. The Interplay of Climate Change and Air Pollution on Health. Curr Environ Health Rep, 4(4), p.504-513. (2017).
36. IPCC. Annex I: Glossary. In Global Warming of 1.5°C (pp. 541-562). (2022).
37. IPCC. AR6 WGI Report.(2021).
38. IPCC. CLIMATE CHANGE 2001: THE SCIENTIFIC BASIS.(2001).
39. IPCC. Climate Change 2014: Synthesis Report.(2015).
40. ISO. Greenhouse gases: specification with guidance at the organization level for quantification and reporting of green house gas emissions and removals. (2019).
41. ISO. ISO 14064-1. (2018).
42. J. C. Minx, Wiedmann, T., Wood, R., Peters, G. P., Lenzen, M., Owen, A., Scott, K., Barrett, J., Hubacek, K., Baiocchi, G., Paul, A., Dawkins, E., Briggs, J., Guan, D., Suh, S., & Ackerman, F. Input–Output Analysis and Carbon Footprinting: An Overview of Applications. Economic Systems Research, 21(3), p.187-216. (2009).
43. J. Shackleton Bailey. What is a Financial Barrier? British Medical Journal, 1(5383), p.638-638. (1964).
44. James Salo. Greening Value Chains: How Large Companies in Latin America and the Caribbean Can Influence Natural Resource Use and Environmental Impact Management in Their Value Chains: Case Study.(2016).
45. Jerry Patchell. Can the implications of the GHG Protocol's scope 3 standard be realized? Journal of Cleaner Production, 185, p.941-958. (2018).
46. Jingwen Huo, Chen, Peipei, Hubacek, Klaus, Zheng, Heran, Meng, Jing, & Guan, Dabo. Full‐scale, near real‐time multi‐regional input–output table for the global emerging economies (EMERGING). Journal of Industrial Ecology, 26(4), p.1218-1232. (2022).
47. Julien Walzberg, Lonca, Geoffrey, Hanes, Rebecca J., Eberle, Annika L., Carpenter, Alberta, & Heath, Garvin A. Do We Need a New Sustainability Assessment Method for the Circular Economy? A Critical Literature Review. Frontiers in Sustainability, 1. (2021).
48. Jun Xie, Nozawa, Wataru, Yagi, Michiyuki, Fujii, Hidemichi, & Managi, Shunsuke. Do environmental, social, and governance activities improve corporate financial performance? Business Strategy and the Environment, 28(2), p.286-300. (2019).
49. Justin Kitzes. An Introduction to Environmentally-Extended Input-Output Analysis. Resources, 2(4), p.489-503. (2013).
50. K. Rennert, Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer, W., Kingdon, C., Wingenroth, J., Cooke, R., Parthum, B., Smith, D., Cromar, K., Diaz, D., Moore, F. C., Muller, U. K., Plevin, R. J., Raftery, A. E., Sevcikova, H., Sheets, H., Stock, J. H., Tan, T., Watson, M., Wong, T. E., & Anthoff, D. Comprehensive evidence implies a higher social cost of CO(2). Nature, 610(7933), p.687-692. (2022).
51. Katharine Ricke, Drouet, Laurent, Caldeira, Ken, & Tavoni, Massimo. Country-level social cost of carbon. Nature Climate Change, 8(10), p.895-900. (2018).
52. Konstantin Stadler, Wood, Richard, Bulavskaya, Tatyana, Södersten, Carl-Johan, Simas, Moana, Schmidt, Sarah, Usubiaga, Arkaitz, Acosta-Fernández, José, Kuenen, Jeroen, Bruckner, Martin, Giljum, Stefan, Lutter, Stephan, Merciai, Stefano, Schmidt, Jannick H., Theurl, Michaela C., Plutzar, Christoph, Kastner, Thomas, Eisenmenger, Nina, Erb, Karl-Heinz, de Koning, Arjan, & Tukker, Arnold. EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. Journal of Industrial Ecology, 22(3), p.502-515. (2018).
53. Korea Capital Market Institute. Financial Strategy to Accelerate Innovation for Green Growth. (2010).
54. Manfred Lenzen, Geschke, Arne, Abd Rahman, Muhammad Daaniyall, Xiao, Yanyan, Fry, Jacob, Reyes, Rachel, Dietzenbacher, Erik, Inomata, Satoshi, Kanemoto, Keiichiro, Los, Bart, Moran, Daniel, Schulte in den Bäumen, Hagen, Tukker, Arnold, Walmsley, Terrie, Wiedmann, Thomas, Wood, Richard, & Yamano, Norihiko. The Global MRIO Lab – charting the world economy. Economic Systems Research, 29(2), p.158-186. (2017).
55. Manfred Lenzen, Moran, Daniel, Kanemoto, Keiichiro, & Geschke, Arne. Building Eora: A Global Multi-Region Input–Output Database at High Country and Sector Resolution. Economic Systems Research, 25(1), p.20-49. (2013).
56. Manfred Lenzen. Aggregation Versus Disaggregation in Input–Output Analysis of the Environment. Economic Systems Research, 23(1), p.73-89. (2011).
57. Mario Schmidt, Nill, Moritz, & Scholz, Johannes. Determining the Scope 3 Emissions of Companies Chemical Engineering & Technology, 45(7), p.1218-1230. (2022).
58. Marshall Burke, Hsiang, Solomon M., & Miguel, Edward. Global non-linear effect of temperature on economic production. Nature, 527(7577), p.235-239. (2015).
59. Maxime Agez, Wood, Richard, Margni, Manuele, Strømman, Anders H., Samson, Réjean, & Majeau‐Bettez, Guillaume. Hybridization of complete PLCA and MRIO databases for a comprehensive product system coverage. Journal of Industrial Ecology, 24(4), p.774-790. (2020).
60. Md Al Mamun, Boubaker, Sabri, & Nguyen, Duc Khuong. Green finance and decarbonization: Evidence from around the world. Finance Research Letters, 46, p.102807. (2022).
61. Melissa Dell, Jones, Benjamin F., & Olken, Benjamin A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. American Economic Journal: Macroeconomics, 4(3), p.66-95. (2012).
62. Michael Sonis, Joaquim J.M. Guilhoto, Geoffrey J.D. Hewings, & Eduardo B. Martins. Linkages, Key Sectors and Structural Change: Some New Perspectives. XXXII, p.233-270. (1995).
63. Nannette Lindenberg. Definition of green finance. (2014).
64. Natalia Cano, Berrio, Linda, Carvajal, Elizabeth, & Arango, Santiago. Assessing the carbon footprint of a Colombian University Campus using the UNE-ISO 14064–1 and WRI/WBCSD GHG Protocol Corporate Standard. Environmental Science and Pollution Research, 30(2), p.3980-3996. (2022).
65. Noah Kaufman, Barron, Alexander R., Krawczyk, Wojciech, Marsters, Peter, & McJeon, Haewon. A near-term to net zero alternative to the social cost of carbon for setting carbon prices. Nature Climate Change, 10(11), p.1010-1014. (2020).
66. Oana Marina Bătae, Dragomir, Voicu Dan, & Feleagă, Liliana. The relationship between environmental, social, and financial performance in the banking sector: A European study. Journal of Cleaner Production, 290, p.125791. (2021).
67. OECD. FRAMEWORK FOR BASELINE GUIDELINES.(2001).
68. OurWorldinData. (2021). Change in CO₂ emissions and GDP, World.
69. Pablo Piñero, Sevenster, Maartje, Lutter, Stephan, Giljum, Stefan, Gutschlhofer, Jakob, & Schmelz, Daniel. National hotspots analysis to support science-based national policy frameworks for sustainable consumption and production.(2018).
70. Patrick Bolton, & Kacperczyk, Marcin. Signaling through Carbon Disclosure.(2021).
71. PRI. 全球-聯合國責任投資原則(PRI, Principles for Responsible Investment)公布新的投資指南.(2017).
72. Qiuhong Jiang, Liu, Zhichao, Li, Tao, Zhang, Hongchao, & Iqbal, Asif. Life Cycle Assessment of a Diesel Engine Based on an Integrated Hybrid Inventory Analysis Model. Procedia CIRP, 15, p.496-501. (2014).
73. Roger A. Sheldon. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chem, p.32–48. (2017).
74. Romain Berrou, Dessertine, Philippe, & Migliorelli, Marco. An Overview of Green Finance. p.3-31.(2019).
75. S. Giljum, Wieland, H., Lutter, S., Eisenmenger, N., Schandl, H., & Owen, A. The impacts of data deviations between MRIO models on material footprints: A comparison of EXIOBASE, Eora, and ICIO. J Ind Ecol, 23(4), p.946-958. (2019).
76. S. J. Davis, Peters, G. P., & Caldeira, K. The supply chain of CO2 emissions. Proc Natl Acad Sci U S A, 108(45), p.18554-18559. (2011).
77. Sander de Bruyn, Bijleveld, Marijn, Graaff, Lonneke de, Schep, Ellen, Schroten, Arno, Vergeer, Robert, & Ahdour, Saliha. Environmental Prices Handbook.(2018).
78. SBTi. Foundations of Science-based Target Setting.(2019).
79. Sergio Alvarez, Tobarra, Maria‐Angeles, & Zafrilla, Jorge‐Enrique. Corporate and Product Carbon Footprint under Compound Hybrid Analysis: Application to a Spanish Timber Company. Journal of Industrial Ecology, 23(2), p.496-507. (2018).
80. Simon H. Roberts, Axon, Colin J., Goddard, Nigel H., Foran, Barney D., & Warr, Benjamin S. Modelling socio-economic and energy data to generate business-as-usual scenarios for carbon emissions. Journal of Cleaner Production, 207, p.980-997. (2019).
81. Simon Koesler, & Pothen, Frank. The Basic WIOD CGE Model: A Computable General Equilibrium Model Based on the World Input-Output Database. (2013).
82. Sunbin Yoo, & Managi, Shunsuke. Disclosure or action: Evaluating ESG behavior towards financial performance. Finance Research Letters, 44, p.102108. (2022).
83. T.D. Corsatea, Lindner, S.; Arto, I., Román, M.V., Rueda-Cantuche, J.M., Velázquez Afonso, A., Amores, A.F., & Neuwahl, F. World Input-Output Database Environmental Accounts.(2019).
84. TCFD. Recommendations of the Task Force on Climate-related Financial Disclosures.(2019).
85. Thomas Wiedmann, & Minx, Jan Christoph. A Definition of Carbon Footprint. (2008).
86. Thomas Wiedmann, Lenzen, Manfred, Turner, Karen, & Barrett, John. Examining the global environmental impact of regional consumption activities — Part 2: Review of input–output models for the assessment of environmental impacts embodied in trade. Ecological Economics, 61(1), p.15-26. (2007).
87. UNFCCC. A Beginner’s Guide to Climate Neutrality. Retrieved from https://unfccc.int/blog/a-beginner-s-guide-to-climate-neutrality. (2021).
88. Walter Isard. Interregional and Regional Input-Output Analysis: A Model of a Space-Economy. The Review of Economics and Statistics, 33, p.318-328. (1951).
89. WASSILY LEONTIEF. Why Economics Needs Input-Output Analysis. 28, p.27-35. (1985).
90. WBCSD. Corporate Value Chain (Scope 3) Accounting and Reporting Standard.(2013).
91. 公開資訊觀測站. 企業ESG資訊揭露-溫室氣體排放議題. 臺灣證券交易所. (2021).
92. 公開資訊觀測站. 企業歷年財務資料. 臺灣證券交易所. (2010-2021).
93. 王塗發, 林幸君, 賴金端, & 楊浩彥. 投入產出分析理論與實務. 財團法人台灣經濟研究院 (2020).
94. 台灣自來水股份有限公司. 台灣自來水公司每度用水CO2排放量. (2023).
95. 行政院主計總處. 產業關聯統計編制報告:民國105年.(2021).
96. 行政院環境保護署. 中華民國國家溫室氣體排放清冊報告. (2022b).
97. 行政院環境保護署. 列管事業污染源裁處資料. 政府資料開放平臺. (2016).
98. 行政院環境保護署. 溫室氣體年排放量. 政府資料開放平臺. (2015).
99. 行政院環境保護署. 溫室氣體排放係數管理表. (2019).
100. 行政院環境保護署. 溫室氣體排放量盤查作業指引. (2022a).
101. 行政院環境保護署. 碳足跡資料庫. (2023).
102. 吳佳翰. 綠色供應鏈管理企業怎麼做?. 會計研究月刊, p.80-83. (2022).
103. 李堅明, & 楊喻閔. 企業內部碳價訂定與氣候效益. 會計研究月刊, p.54-59. (2021).
104. 李蘇竣. 《氣候變遷因應法》三讀過關碳費即將開徵重點整理.(2023).
105. 林師模, 楊皓荃, & 林晉勗. 國際碳排放責任分擔之跨國比較分析. 應用經濟論叢, 101, p.67 - 107. (2017).
106. 金融監督管理委員會. 上市櫃公司永續發展路徑圖. Retrieved from https://cgc.twse.com.tw/responsibilityRoadMap/listCh. (2022).
107. 張簡睿豪. 運用WIO表的架構為基礎發展循環減碳評估模式與塑膠循環多情境分析. 2021).
108. 黃正翰, 陳政泰, 王任遠, 洪志岳, & 李佳龍. 第二章 : 營造業產業發展概況. 台灣地區房地產年鑑. (2011).
109. 經濟部工業局. 低碳製程技術資料庫. 產業節能減碳資訊網. (2022b).
110. 經濟部工業局. 製造業產品環境足跡與資源永續資訊. (2022a).
111. 經濟部能源局. 110年度電力排碳係數. (2022).
112. 綠色和平. 台灣溫管法現況概要與修法建議.(2021).
113. 臺灣證券交易所, & 證券櫃檯買賣中心. 半導體產業鏈簡介. 產業價值鏈資訊平台. (2023).
114. 劉哲良, & 吳珮瑛. 台灣碳成本的模擬分析. 中華經濟研究院 (2021).
校內:2026-08-31公開