簡易檢索 / 詳目顯示

研究生: 許寧翔
Sheu, Ning-Shiang
論文名稱: 運用Green Function 研究阻尼JC模型之動力學
Use Green Function to Analyze the Dynamics of Damped Jaynes-Cummings Model
指導教授: 張為民
Zhang, Wei-Min
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 39
中文關鍵詞: 凱爾迪西非平衡態格林函數有阻尼 Jaynes-Cummings model玻恩近似
外文關鍵詞: Keldysh’s non-equilibrium Green Function, damped Jaynes-Cummings model, Born approximation
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們以零溫下,有阻尼的Jaynes-Cummings系統為例,比較三種描述量子開放系統的不同方法。我們首先從Liouville-von Neumann方程出發,得到玻恩近似下,非局域的主方程,接著,將玻恩近似下的主方程做更進一步的後馬可夫近似,得到局域的主方程。第三種方法則是利用凱爾迪西的非平衡態格林函數方法對非平衡態格林函數做玻恩近似。此外,我們也求出零溫下,有阻尼的Jaynes-Cummings模型的嚴格解。最後,我們利用三種方法以及嚴格解的結果分別求出有阻尼的Jaynes-Cummings系統處在激發態的機率隨時間的演化情形。藉由分析嚴格解的結果,我們了解耦合強度以及頻譜寬窄對於系統的影響,並以此為基準分析三種方法所取的各種不同近似,對結果所造成的影響為何。未來可以此分析為基礎,進一步推廣到有限溫度下。

    In this thesis, we use three different methods to describe open quantum systems, in particular, to study the damped Jaynes-Cummings model at zero temperature. We begin with Liouville-von Neumann equation and Born approximation to obtain a time-convolution Master Equation. Then, we make Post-Markov approximation further and obtain a time-convolutionless Master Equation. The third method is based on Keldysh’s non-equilibrium Green function method plus Born approximation. Besides, we also solve exactly the damped Jaynes-Cummings model at zero temperature. We use these methods mentioned above to study the evolution of the probability of the excited state in damped Jaynes-Cummings model. We analyze the result of the exact solution to understand the effect of the coupling strength and spectrum width on the system. By compared the results obtained from the three different approaches with the exact solution, we find the validity of each approach. We also find that the non-equilibrium Green function approach is the most suitable one to study the dynamics of open systems, and may be extended to investigate the open systems dynamics in strong couplings and finite temperature in the future.

    摘要.......................................................i Abstract..................................................ii 致謝.....................................................iii 目錄......................................................iv 圖目錄......................................................v 第1章 引言.................................................1 第2章 Born近似下的Master Equation方法........................3 2-1 Damped Jaynes-Cummings model...........................3 2-2 Born近似下的Master Equation.............................4 2-3 Damped Jaynes-Cummings model在Born近似下的Master Equation...................................................6 第3章 Born近似下的Non-equilibrium Green Function方法........11 第4章 Damped Jaynes-Cummings model的exact solution........20 第5章 比較Born近似下的Master Equation方法和Green Function 方法......................................................24 第6章 結論................................................30 參考文獻...................................................32 附錄A:Lesser Green Function和Reduced Density Matrix的關係..36 附錄B:Interaction picture下的Liouville-von Neumann equation .........................................................38

    [1] H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1995)
    [2] G.D.Mahan, Many-Particle Physics (Plenum, New York, 1993)
    [3] J. Jin, M.W. Tu, W.M. Zhang and Y.Yan, New Journal of Physics 12, 083013
    [4] S. Nakajima, Progr. Theor. Phys. 20, 948 (1958)
    [5] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)
    [6] B.-F. Ding, X.-Y. Wang, Y.-F. Tang, X.-W. Mi, and H.-P. Zhao, Chin. Phys. B 20, 060304 (2011)
    [7] D. Chruscinski, and A. Kossakowski, Phys. Rev. Lett. 104, 070406 (2010)
    [8] A. Smirne, and B. Vacchini, Phys. Rev. A 82, 022110 (2010)
    [9] A. Shabani, and D.A. Lindar, Phys. Rev. A 71, 020101 (2005)
    [10] S. Maniscalco, Phys. Rev. A 75, 062103 (2007)
    [11] L. Mazzola, E.-M. Laine, H.-P. Breuer, S. Maniscalco, and J. Piilo, Phys. Rev. A 81, 062120 (2010)
    [12] F. Haake, Statistical Treatment of Open Systems, Springer Tracts in Modern Physics, Vol 66 (Springer, Berlin, 1973)
    [13] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics Ⅱ. Nonquilibrium Statistical Mechanics (Springer, Berlin, 1991)
    [14] S. Maniscalco, and F. Petruccione, Phys. Rev. A 73, 012111 (2006)
    [15] B. Vacchini, and H. –P, Breuer, Phys. Rev. A 81, 042103 (2010)
    [16] H. –P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)
    [17] P. M. Bakshi, K.T. Mahanthappa, J.Mat.Phys. 4, 1 (1963)
    [18] P. M. Bakshi, K.T. Mahanthappa, J.Mat.Phys. 4, 12 (1963)
    [19] J. Schwinger, J. Math. Phys. 2, 407 (1961)
    [20] L. P. Kadnoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)
    [21] D. C. Langreth, Linear and Nonlinear Electron Transport in Solids (lectures presented at the NATO Advanced Study Institute on Linear and Nonlinear Electronic Transport in Solids ) (edited by J. T. Devreese and V. E. van Doren.) (Plenum, New York, 1976)
    [22] L. P. Keldysh, Sov. Phys. JETP 20, 1018 (1965)
    [23] G. Odor, Rev. Mod. Phys. 76, 663 (2004)
    [24] M. A. Cazalilla and M. Rigol, New J. Phys. 12, 055006 (2010)
    [25] P. Myohanen, A. Stan, G. Stefanucci, and R. van Leeuwen, Europhys. Lett. 84, 67001 (2008)
    [26] C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075005 (2010)
    [27] P. Myohanen, A. Stan, G. Stefanucci, and R. van Leeuwen, Phys. Rev. B 80, 115107 (2009)
    [28] N. E. Dahlen and R. van Leeuwen, Phys. Rev. Lett. 98, 153004 (2007)
    [29] K. Balzer, S. Bauch, and M. Bonitz, Phys. Rev. A 82, 033427 (2010)
    [30] U. Harbola, J. Maddox, and S. Mukamel, Phys. Rev. B 73, 205404 (2006)
    [31] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963)
    [32] I. I. Rabi, Phys. Rev. 51, 652 (1973)
    [33] D.Meschede,H. Walther, and G. Muller, Phys. Rev. Lett. 54, 551 (1985)
    [34] K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 73, 3375 (1994)
    [35] W. Vogel and R. L. de Matos Filho, Phys. Rev. A 52, 4214 (1995)
    [36] J. Steinbach, J. Twamley, and P. L. Knight, Phys. Rev. A 56, 4815 (1997)
    [37] V. Buzek, G. Drobny, M. S. Kim, G. Adam, and P. L. Knight, Phys. Rev. A 56, 2352 (1997)
    [38] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, S. Haroche, Science 288, 2024 (2000)
    [39] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, J. Phys. B:At. Mol. Opt. Phys. 38, S551 (2005)
    [40] S. Prawer and A. Greentree, Science 320, 1601 (2008)
    [41] C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, Phys. Rev. Lett. 104, 160503 (2010)
    [42] K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, Opt. Express 16, 16255 (2008)
    [43] P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, Rep. Prog. Phys. 63, 455 (1999)
    [44] M. M. Dignam and Mohsen Kamandar Dezfouli, Phys Rev. A. 85, 013809 (2012)
    [45] P. Domokos, T. Salzburger, and H. Ritsch, Phys. Rev. A. 66, 043406 (2002)
    [46] J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, Cambridge, 2007)

    下載圖示 校內:2013-08-15公開
    校外:2013-08-15公開
    QR CODE