| 研究生: |
李崑豪 Lee, Kuen-Haur |
|---|---|
| 論文名稱: |
微小核醣核酸miRNA-330和miRNA-373 在人
類癌症的表現量變曲線與功能之分析 The expression profiling and functional analysis of miRNA-330 and miRNA-373 genes in human cancers |
| 指導教授: |
呂佩融
Lu, Pei-Jung 陳玉玲 Cheng, Yuh-Ling |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 微小核醣核酸 、攝護腺癌 、食道癌 |
| 外文關鍵詞: | MiRNA, Prostate cancer, ESCC, E2F1, Akt, LATS2 |
| 相關次數: | 點閱:188 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微小核醣核酸(microRNA/miRNA)是一段長度約為22 核苷酸的寡核醣
核酸分子,它們可以藉由調控mRNA來抑制轉譯作用或是造成mRNA的降
解來降低基因的表現。近來有許多研究發現,miRNA與癌症具有高度的相
關性。因此推論miRNA可能是癌化過程的一個導因。到目前為止,在人體
上有超過700個miRNA被發現,而大約有100左右的miRNA被確認與人類癌
症具有相關性,這其中包含有乳癌、血癌、肺癌、直腸癌、腦癌和肝癌。
不過,對於大部分的miRNA在人類癌症所扮演的角色仍需進一步印證。本
篇研究主要要探討與攝護腺癌及食道癌相關的miRNAs分別在攝護腺癌及
食道癌癌化過程中所扮演的角色。在攝護腺癌細胞中,我們發現miR-330
在攝護腺癌細胞株中的表現與正常攝護腺細胞株作比較,有明顯下降的現
象。進一步,利用生物資訊學方法和luciferase reporter assay,我們發現miR-330的調控蛋白質為E2F1。分析攝護腺癌細胞株與攝護腺癌臨床組織中,E2F1蛋白質的表現,我們發現E2F1蛋白質的表現的確與miR-330的表
現,有相反的趨勢。為了瞭解miR-330在細胞中的調控機轉,我們在攝護
腺癌細胞株中過渡表現miR-330,結果發現miR-330可以藉由抑制E2F1的表
現間接抑制Akt的磷酸化,而促使細胞的生長被抑制,進而誘導細胞凋亡。
在食道癌細胞中,我們發現抑癌蛋白質-LATS2的表現受到miR-373所抑制
並且在食道癌細胞株與食道癌臨床組織中,LATS2與miR-373的表現有相反
的趨勢。我們也發現在食道癌細胞中抑制或過度表現miR-373,細胞的生
長會受到影響。綜合上述結果,我們發現miR-330和miR-373均可以透過調
控其target proteins來影響攝護腺癌細胞及食道癌細胞的生長。另外,此研究也提供將來在臨床上治療攝護腺癌和食道癌的新方向。
MicroRNAs (miRNAs) are 22-nucleotide sequences that interact with multiple mRNAs resulting in either translational repression or degradation. A number of
studies have demonstrated that deregulation of miRNAs associates with cancer development and tumorigenesis. So far, the number of human miRNAs has been reported in excess of 700 and about one hundred miRNAs have been demonstrated to associate with various cancer development including breast cancer, leukemia, lung cancer, colon cancer, brain cancer and liver cancer. But, the roles of most miRNAs in tumorigenesis remained to be clarified. This study aimed to investigate the roles of prostate cancer related miRNAs and esophageal cancer related miRNAs in prostate and esophageal cancers tumorigenesis. In prostate cancer, we demonstrated that miR-330 was significantly lower expressed in human prostate cancer cell lines than in nontumorigenic prostate epithelial cells. Bioinformatics analyses and luciferase reporter assay reveal that one of target of miR-330 was E2F1. The expression level of miR-330 and E2F1 was inversely correlated in cell lines and prostate cancer specimens. After overexpressing of miR-330 in PC-3 cells, cell growth was suppressed by reducing E2F1-mediated Akt phosphorylation and thereby inducing apoptosis. In esophageal cancer, we found that large tumor suppressor, homolog 2 (LATS2) protein expression was mediated by miR-373 at the post-transcriptional level and inversely correlated with miR-373 amounts in esophageal cancer. The direct inhibition of LATS2 protein was mediated by miR-373 and manipulated the expression of miR-373 to affect esophageal cancer cells growth. These evidences suggest the important roles of prostate cancer and esophageal cancer-related miRNAs in tumorgenesis by regulating their target protein expression. And this highlight these
miRNAs or their targets may be as new therapeutic targets for prostate cancer and esophageal cancer in the future.
台灣地區主要死因分析(2008),行政院衛生署統計資料
Abate-Shen C, Shen MM (2000). Molecular genetics of prostate cancer. Genes & Dev 14:2410-34.
Al-Sarra Mf, Martz K, Herskovic A, Leichman L, Brindle JS, Vaitkevicius VK et al (1997). Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol 15:277–84.
Altman DG, Bland JM (1994). Diagnostic tests. 1:Sensitivity and specificity. BMJ 308:1552.
Ayala G, Thompson T, Yang G, Frolov A, Li R, Scardino P et al (2004). High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res 10:6572-8.
Baron V, Adamson ED, Calogero A, Ragona G, Mercola D (2006). The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1,
PTEN, p53, and fibronectin. Cancer Gene Ther 13:115-24.
Barry MJ (2001). Clinical practice: Prostate-specific-antigen testing for early diagnosis of prostate cancer. N Engl J Med 344:1373-77.
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-97.
Bostwick, DG, Brawer, MK (1987). Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer 59:788-94.
Boynton RF, Huang Y, Blount PL, Reid BJ, Raskind WH, Haggitt RC et al (1991). Frequent loss of heterozygosity at the retinoblastoma locus in human esophageal cancers. Cancer Res 51:5766-69.
Bracarda S, de Cobelli O, Greco C, Prayer-Galetti T, Valdagni R, Gatta G, et al (2005). Cancer of the prostate. Crit Rev Oncol Hematol 56:379-96.
Bueno MJ, de Castro IP, Malumbres M (2008). Control of cell proliferation pathways by microRNAs. Cell Cycle 7: 3143-8.
Cantley LC (2002). The phosphoinositide 3-kinase pathway. Science 296:1655-7.
Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613-8.
Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745-52.
Chaussepied M, Ginsberg D (2004). Transcriptional regulation of AKT activation by E2F. Mol Cell 16: 831-7.
Chen CZ (2005). MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353:1768-71.
Chen CZ, Li L, Lodish HF, Bartel DP (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83-6.
Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA et al (2003). Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113: 507-17.
Chivukula RR, Mendell JT (2008). Circular reasoning: microRNAs and cell-cycle control. Trends Biochem Sci 33: 474-81.
Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351-8.
Cinar B, Fang PK, Lutchman M, Di Vizio D, Adam RM, Pavlova N et al (2007). The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 26:4523-34.
Crawford ED (2009). Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology 73:S4-10.
Creasy CL, Ambrose DM, Chernoff J (1996). The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J Biol Chem 271:21049-53.
Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231-41.
Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA et al (2006). Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 66:11897-906.
Diederichs S, Haber DA (2007). Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097-108.
Dong JT. Chromosomal deletions and tumor suppressor genes in prostate cancer Cancer Metastasis Rev. 2001, 20:173-193.
Eid MA, Kumar MV, Iczkowski KA, Bostwick DG, Tindall DJ (1998). Expression of early growth response genes in human prostate cancer. Cancer Res 58:2461-8.
Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al (2004). MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361-5.
Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259-69.
Fearon ER, Vogelstein B (1990). A genetic model for colorectal tumorigenesis. Cell 6:759-67.
Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M et al (2008).MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135:255-60; discussion 260.
Filipowicz W, Bhattacharyya SN, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102-14.
Franke TF, Kaplan DR, Cantley LC, Toker A (1997). Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665-8.
Garzon R, Calin GA, Croce CM (2009). MicroRNAs in Cancer. Annu Rev Med 60:167-79.
Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C et al (2007).Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456-68.
Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode EL et al (1999).Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 64:776-87.
Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD (2000).Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60:4894-906.
Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001). Cancer statistics. CA Cancer J Clin 51:15-36.
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140-4.
Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP (2007). Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res 101:1113-22.
Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X et al (2008). Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68:26-33.
Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell 100:57-70.
He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522-31.
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007). A microRNA component of the p53 tumour suppressor network. Nature 447:1130-4.
Hiyama T, Yoshihara M, Tanaka S, Chayama K (2007). Genetic polymorphisms and esophageal cancer risk. Int J Cancer 121:1643-58.
Hu N, Roth MJ, Polymeropolous M, Tang ZZ, Emmert-Buck MR, Wang QH et al (2000). Identification of novel regions of allelic loss from a genomewide scan of esophageal squamous cell carcinoma in a high-risk Chinese population. Genes
Chromosomes Cancer 27:217-28.
Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10:202-10.
Huang Y, Boynton RF, Blount PL, Silverstein RJ, Yin J, Tong Y et al (1992). Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res 52:6525-30.
Hwang HW, Mendell JT (2007). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96 Suppl:R40-4.
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005).MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065-70.
Ishizaki K, Fujimoto J, Kumimoto H, Nishimoto Y, Shimada Y, Shinoda M et al (2002). Frequent polymorphic changes but rare tumor specific mutations of the LATS2 gene on 13q11-12 in esophageal squamous cell carcinoma. Int J Oncol 21:1053-7.
Ishizuka T, Tanabe C, Sakamoto H, Aoyagi K, Maekawa M, Matsukura N et al (2002).Gene amplification profiling of esophageal squamous cell carcinomas by DNA array CGH. Biochem Biophys Res Commun 296:152-5.
Iwaya T, Maesawa C, Ogasawara S, Tamura G (1998). Tylosis esophageal cancer locus on chromosome 17q25.1 is commonly deleted in sporadic human esophageal cancer. Gastroenterology 114:1206-10.
Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003). The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17:2514-9.
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004). Human MicroRNA targets. PLoS Biol 2:e363.
Johnson DG, Degregori J (2006). Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context. Curr Mol Med 6:731-8.
Karan D, Lin MF, Johansson SL, Batra SK (2003). Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer 103:285-93.
Ke H, Pei J, Ni Z, Xia H, Qi H, Woods T et al (2004). Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L). Exp Cell Res 298: 329-38.
Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN et al (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11: 701-13.
Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654-9.
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005). Combinatorial microRNA target predictions. Nat Genet 37:495-500.
Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P, et al (2007). Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis Cancer Res 67:8504-10.
Lee EY, To H, Shew JY, Bookstein R, Scully P, Lee WH (1988). Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241:218-21.
Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-54.
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051-60.
Leung KW, Tsai CH, Hsiao M, Tseng CJ, Ger LP, Lee KH et al (2009). Pin1 overexpression is associated with poor differentiation and survival in oral squamous cell carcinoma. Oncol Rep 21:1097-104.
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003). Prediction of mammalian microRNA targets. Cell 115:787-98.
Li G, Hu N, Goldstein AM, Tang ZZ, Roth MJ, Wang QH et al (2001). Allelic loss on chromosome bands 13q11-q13 in esophageal squamous cell carcinoma. Genes Chromosomes Cancer 31:390-7.
Li Y, Pei J, Xia H, Ke H, Wang H, Tao W (2003). Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 22:4398-405.
Liu K, Paik JC, Wang B, Lin FT, Lin WC (2006). Regulation of TopBP1 oligomerization by Akt/PKB for cell survival. EMBO J 25:4795-807.
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005). MicroRNA expression profiles classify human cancers. Nature 435:834-8.
Ma L, Teruya-Feldstein J, Weinberg RA (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682-8.
Ma L, Weinberg RA (2008). Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 24:448-56.
Maesawa C, Tamura G, Hishizuka S, Ogasawara S, Ishida K, Terashima M, et al (1996). Inactivation of CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res 56:3875-78.
Maesawa C, Tamura G, Suzuki Y, Ogasawara S, Ishida K, Saito K et al (1994). Aberrations of tumor-suppressor genes (p53, apc, mcc and Rb) in esophageal squamous-cell carcinoma. Int J Cancer 57:21-5.
Matos P, Oliveira C, Velho S, Goncalves V, da Costa LT, Moyer MP et al (2008). B-Raf (V600E) cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival. Gastroenterology 135:899-906.
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185-97.
Miska EA (2005). How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563-8.
Montesano R, Hollstein M, Hainaut P (1996). Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer 69:225-35.
Morgan TM, Koreckij TD, Corey E (2009). Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets 9:237-49.
Muratovska, A, Zhou, C, He, S, Goodyer, P & Eccles, M R (2003). Paired-box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22:7989-97.
Nam TK, Lee JH, Cho SH, Chung IJ, Ahn SJ, Song JY, et al (2007). Low hMLH1 expression prior to definitive chemoradiotherapy predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Lett 260:109-17.
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839-43.
Ohtani K, DeGregori J, Nevins JR (1995). Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci U S A 92:12146-50.
Olsson AY, Cooper CS (2005). The molecular basis of prostate cancer. Br J Hosp Med (Lond) 66:612-16.
Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788-93.
Pal P, Xi H, Sun G, Kaushal R, Meeks JJ, Thaxton CS et al (2007). Tagging SNPs in the kallikrein genes 3 and 2 on 19q13 and their associations with prostate cancer in men of European origin. Hum Genet 122:251-9.
Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G et al (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13:497-508.
Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al (2008). E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272-86.
Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, Russell JL, Conti CJ, Johnson DG (1999). E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 19:6408-14.
Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci
U S A 105:1608-13.
Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130-5.
Ren A, Yan G, You B, Sun J (2008). Down-regulation of mammalian sterile 20-like kinase 1 by heat shock protein 70 mediates cisplatin resistance in prostate cancer cells. Cancer Res 68: 2266-74.
Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000). Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275:9390-5.
Ruan K, Fang X, Ouyang G (2009). MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Lett
Ruike Y, Ichimura A, Tsuchiya S, Shimizu K, Kunimoto R, Okuno Y et al (2008). Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J Hum Genet 53:515-23.
Ruvkun, G (2001). Molecular biology. Glimpses of a tiny RNA world. Science 294:797-99
Sakr, WA, Haas, GP, Cassin, BF, Pontes, JE, Crissman, JD (1993). The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150:379-85.
Saramäki OR, Porkka KP, Vessella RL, Visakorpi T (2006). Genetic aberrations in prostate cancer by microarray analysis. Int J Cancer 119:1322-29.
Sato T, Saito H, Morita R, Koi S, Lee JH, Nakamura Y (1991). Allelotype of human ovarian cancer. Cancer Res 51:5118-22.
Sethupathy P, Megraw M, Hatzigeorgiou AG (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881-6.
Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW (2005). Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res 65:1561-9.
Shiomi H, Sugihara H, Kamitani S, Tokugawa T, Tsubosa Y, Okada K et al (2003). Cytogenetic heterogeneity and progression of esophageal squamous cell carcinoma. Cancer Genet Cytogenet 147:50-61.
Shyr CR, Tsai MY, Yeh S, Kang HY, Chang YC, Wong PL et al (2009). Tumor suppressor PAX6 functions as androgen receptor Co-repressor to inhibit prostate cancer growth. Prostate Sep 29.
Slager SL, Schaid DJ, Cunningham JM, McDonnell SK, Marks AF, Peterson BJ et al (2003). Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 72:759-62.
Stanelle J, Putzer BM (2006). E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 12:177-85.
Strachan T, Read AP (1994). PAX genes. Curr Opin Genet Dev 4:427-38.
Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC et al (1988). A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53:37-43.
Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, et al (2009). SNPs in human miRNA genes affect biogenesis and function. RNA 15:1640-51.
Sun J, Liu W, Adams TS, Sun J, Li X, Turner AR, et al (2007). DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 67:692-700.
Tam SW, Theodoras AM, Shay JW, Draetta GF, Pagano M (1994). Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for Cyclin D1 function in G1 progression. Oncogene 9:2663-74.
Tarmin L, Yin J, Zhou X, Suzuki H, Jiang HY, Rhyu MG et al (1994). Frequent loss of heterozygosity on chromosome 9 in adenocarcinoma and squamous cell carcinoma of the esophagus. Cancer Res 54:6094-6.
Testa JR, Bellacosa A (2001). AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98:10983-5.
Thomas GV, Horvath S, Smith BL, Crosby K, Lebel LA, Schrage M et al (2004). Antibody-based profiling of the phosphoinositide 3-kinase pathway in clinical prostate cancer. Clin Cancer Res 10:8351-6.
Tsuruta F, Masuyama N, Gotoh Y (2002). The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem
277:14040-7.
Tyagi A, Agarwal R, Agarwal C (2003). Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis. Oncogene 22:1302-16.
Uney JB, Lightman SL (2006). MicroRNAs and osmotic regulation. Proc Natl Acad Sci U S A 103:15278-9.
Ura S, Masuyama N, Graves JD, Gotoh Y (2001). Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc Natl Acad Sci U S A 98:10148-53.
Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V et al (2007). MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14:791-8.
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257-61.
Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169-81.
Wang HP, Rogler CE (1988). Deletions in human chromosome arms 11p and 13q in primary hepatocellular carcinomas. Cytogenet Cell Genet 48:72-8.
Wienholds E, Plasterk RH (2005). MicroRNA function in animal development. FEBS Lett 579:5911-22.
Wobst A, Audisio RA, Colleoni M, Geraghty JG (1998). Oesophageal cancer treatment: studies, strategies and facts. Ann Oncol 9:951-62.
Wong WY, Chen SC, Chueh SC, Chen J (2004). The trend of managing prostate cancer in Taiwan. International Journal of Urology 11:510-14.
Xing D, Tan W, Lin D (2003). Genetic polymorphisms and susceptibility to esophageal cancer among Chinese population (review). Oncol Rep 10:1615-23.
Yamaoka T, Yano M, Yamada T, Matsushita T, Moritani M, Ii S et al (2000). Diabetes and pancreatic tumours in transgenic mice expressing Pax 6. Diabetologia 43:332-39.
Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B et al (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486-91.
Yano S, Matsuyama H, Matsuda K, Matsumoto H, Yoshihiro S, Naito K (2004). Accuracy of an array comparative genomic hybridization (CGH) technique in detecting DNA copy number aberrations: comparison with conventional CGH and loss of heterozygosity analysis in prostate cancer. Cancer Genet Cytogenet 15:122-27.
Yen CC, Chen YJ, Chen JT, Hsia JY, Chen PM, Liu JH et al (2001). Comparative genomic hybridization of esophageal squamous cell carcinoma: correlations between chromosomal aberrations and disease progression/prognosis. Cancer 92:2769-77.
Zamore PD, Haley B (2005). Ribo-gnome: the big world of small RNAs. Science 309:1519-24.
Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN et al (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303-17.
Zhao Y, Samal E, Srivastava D (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214-20.
Zheng C, Ren Z, Wang H, Zhang W, Kalvakolanu DV, Tian Z et al (2009). E2F1 Induces tumor cell survival via nuclear factor-kappaB-dependent induction of EGR1 transcription in prostate cancer cells. Cancer Res 69:2324-31.
Zhou H, Li XM, Meinkoth J, Pittman RN (2000). Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483-94.
Zhou YH, Wu X, Tan F, Shi YX, Glass T, Liu TJ et al (2005). PAX6 suppresses growth of human glioblastoma cells. J Neurooncol 71:223-29.
校內:2019-01-01公開