簡易檢索 / 詳目顯示

研究生: 依美玲
Dhar, Trayee
論文名稱: 探討枯草桿菌在厭氧狀態下的生長情形
Functional investigation of anaerobic growth in gram positive model bacteria Bacillus subtilis
指導教授: 橋本昌征
Masayuki Hashimoto
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 63
外文關鍵詞: Aerobic, anaerobic, fermentation, respiration
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • B. subtilis is a well characterized facultative anaerobe which is considered as a Gram- positive model bacterium. In the bacteria, aerobic and anaerobic respiration are facilitated in the presence of oxygen and nitrate as final electron acceptors respectively. Electron transport from electron donors (NADH, FADH2) is conducted by ‘quinone’- a lipid soluble organic molecule located in the membrane. Under anaerobic condition, when nitrate is absent, B. subtilis undergoes fermentation to utilize electrons generated throughout the glycolysis and Krebs’s cycle. Studying the anaerobic growth modes of bacteria is essential to acquire insight of anaerobic growth strategies of other endospore former Gram-positive pathogenic bacteria such as B. cereus, B. anthracis etc. which are able to colonize host gastrointestinal (GI) tract.
    Quinones are indispensable for respiration and B. subtilis is known to utilize menaquinone (MK), a naphthoquinone in respiration. In the MK biosynthetic pathway, in B. subtilis, two types of naphthoquinones such as menaquinone (MK) and demethylmenaquinone (DMK) are found. DMK is the precursor for MK synthesis by menG. Function of DMK is yet to be investigated. This study aspired to characterize the importance and preference of anaerobic respiration and fermentation under anaerobic condition. To answer this query, growth of the two quinone mutants under aerobic and anaerobic conditions were observed, moreover, the expression of anaerobic respiratory (nasD, hmp, narG, fnr) and fermentative genes (lctE, alsS) was determined as well. Function of the DMK in respiration of B. subtilis was also interrogated. For anaerobic growth specially through anaerobic respiration ResDE two component system is inevitable. Respiratory nitrate reductase (narGHJI) and assimilatory nitrite reductase (nasDE), and Fnr (fnr)are essential complexes in anaerobic nitrate respiration in B. subtilis. Expression of nasD, hmp and fnr is ResDE -dependent. In spite of known essential function of ResDE system in anaerobic respiration, the signal for the activation of the sensor domain ResE is unknown. Henceforth, another aim of the study was to determine the function of quinone (MK and DMK) in the activation of ResE. In this study, the expression of nasD, hmp, and fnr was considered as reporters for ResE activation.
    In order to conduct the study, two quinone mutants were constructed to facilitate distinction between two anaerobic growth modes and those were derived from wild type B. subtilis 168. Among two the quinone mutants, ∆menA strain is unable to produce any of the quinones due to menA (DMK synthesis) deletion. In addition, another quinone mutant ∆menG strain accumulates only DMK due to menG deletion. To determine the essentiality of quinones in B. subtilis, quinone mutants were grown aerobically or anaerobically in media containing glucose or nitrate or with both; media with no glucose and nitrate was considered as basal media for comparison. Glucose and nitrate were provided to facilitate fermentation and nitrate respiration respectively. RNA samples collected from these cultures were analyzed to determine the expression of, hmp, narG, fnr, lctE, and alsS genes. When ∆ menA strain was grown in media containing both glucose and nitrate without MK-4 supplementation under anaerobic condition, the bacteria grew well and fermentative genes lctE and alsS were upregulated compared to that in media without MK-4 supplementation. In addition, expression of anaerobic respiratory genes nasD, hmp was downregulated. This result suggested that without MK the bacteria grows anaerobically via fermentation, moreover, MK is essential for anaerobic respiration. In terms of ResE activation, downregulation of nasD and hmp in the ∆ menA strain cultured without MK-4 compared to that with MK-4 suggested that MK pool could have function in ResE activation. Growth of ∆menG strain in media containing both glucose and nitrate without MK supplementation under aerobic and anaerobic condition suggested that DMK is functional in aerobic respiration, however, it is not functional under anaerobic respiration condition. In addition, in the presence of both MK and DMK, the ∆menG strain showed significantly slower growth speed than in WT when cultured both aerobically and anaerobically. This result suggested the possibility of inhibitory function of DMK in bacterial growth. In ∆menG strain the expression of nasD and hmp in presence of both MK, DMK and in the presence of only DMK were similar, which suggested possible involvement of DMK in the inactivation of ResE. Further studies are required to understand the functional mechanism of ResE activation or deactivation by MK and DMK.

    ACKNOWLEDGEMENTS i ABSTRACT ii CONTENTS iv LIST OF FIGURES v LIST OF TABLES vi INTRODUCTION 1 AIM OF THE STUDY 13 MATERIALS AND METHODS 14 RESULTS 23 DISCUSSION 29 CONCLUSION 32 FIGURES AND TABLES 33 REFERENCES 57

    1. Wipat A, Harwood CR. The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiology Ecology. 1999;28(1):1-9. doi: 10.1111/j.1574-6941.1999.tb00555.x.
    2. Sonenshein AL, Hoch JA, Losick R. Bacillus subtilis and its closest relatives : from genes to cells. Washington, D.C.: ASM Press; 2002.
    3. Farrar WE, Jr. Serious infections due to "non-pathogenic" organisms of the genus Bacillus. Review of their status as pathogens. Am J Med. 1963;34:134-41. doi: 10.1016/0002-9343(63)90047-0.
    4. Ihde DC, Armstrong D. Clinical spectrum of infection due to Bacillus species. Am J Med. 1973;55(6):839-45. doi: 10.1016/0002-9343(73)90266-0.
    5. Tam NK, Uyen NQ, Hong HA, Duc le H, Hoa TT, Serra CR, et al. The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol. 2006;188(7):2692-700. doi: 10.1128/JB.188.7.2692-2700.2006.
    6. Hong HA, Duc le H, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005;29(4):813-35. doi: 10.1016/j.femsre.2004.12.001.
    7. Tsukamoto Y, Kasai M, Kakuda H. Construction of a Bacillus subtilis (natto) with high productivity of vitamin K2 (menaquinone-7) by analog resistance. Biosci Biotechnol Biochem. 2001;65(9):2007-15. doi: 10.1271/bbb.65.2007.
    8. Inooka S, Uehara S, Kimura M. The effect of Bacillus natto on the T and B lymphocytes from spleens of feeding chickens. Poult Sci. 1986;65(6):1217-9. doi: 10.3382/ps.0651217.
    9. Jurtshuk P, Jr. Bacterial Metabolism. In: th, Baron S, editors. Medical Microbiology. Galveston (TX)1996.
    10. Henkel SG, Ter Beek A, Steinsiek S, Stagge S, Bettenbrock K, de Mattos MJ, et al. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions. PLoS One. 2014;9(9):e107640. doi: 10.1371/journal.pone.0107640.
    11. Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE. The rotary mechanism of ATP synthase. Curr Opin Struct Biol. 2000;10(6):672-9. doi: 10.1016/s0959-440x(00)00147-0.
    12. Priest FG. Systematics and Ecology of Bacillus. 1993.
    13. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997;390(6657):249-56. doi: 10.1038/36786.
    14. Cruz Ramos H, Boursier L, Moszer I, Kunst F, Danchin A, Glaser P. Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. EMBO J. 1995;14(23):5984-94.
    15. Larsson JT, Rogstam A, von Wachenfeldt C. Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. Microbiology. 2005;151(Pt 10):3323-35. doi: 10.1099/mic.0.28124-0.
    16. Sun G, Sharkova E, Chesnut R, Birkey S, Duggan MF, Sorokin A, et al. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J Bacteriol. 1996;178(5):1374-85. doi: 10.1128/jb.178.5.1374-1385.1996.
    17. Nakano MM, Geng H, Nakano S, Kobayashi K. The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. J Bacteriol. 2006;188(16):5878-87. doi: 10.1128/JB.00486-06.
    18. Sharma P, Stagge S, Bekker M, Bettenbrock K, Hellingwerf KJ. Kinase activity of ArcB from Escherichia coli is subject to regulation by both ubiquinone and demethylmenaquinone. PLoS One. 2013;8(10):e75412. doi: 10.1371/journal.pone.0075412.
    19. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981;45(2):316-54.
    20. Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta. 1997;1320(3):217-34. doi: 10.1016/s0005-2728(97)00034-0.
    21. Nitzschke A, Bettenbrock K. All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12. PLoS One. 2018;13(4):e0194699. doi: 10.1371/journal.pone.0194699.
    22. Sharma P, Teixeira de Mattos MJ, Hellingwerf KJ, Bekker M. On the function of the various quinone species in Escherichia coli. FEBS J. 2012;279(18):3364-73. doi: 10.1111/j.1742-4658.2012.08608.x.
    23. Nakano MM, Zuber P. Anaerobic growth of a "strict aerobe" (Bacillus subtilis). Annu Rev Microbiol. 1998;52:165-90. Epub 1999/01/19. doi: 10.1146/annurev.micro.52.1.165.
    24. Meganathan R. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm. 2001;61:173-218. doi: 10.1016/s0083-6729(01)61006-9.
    25. Ueda D, Matsugane S, Okamoto W, Hashimoto M, Sato T. A Non-Enzymatic Pathway with Superoxide in Intracellular Terpenoid Synthesis. Angew Chem Int Ed Engl. 2018;57(32):10347-51. doi: 10.1002/anie.201805383.
    26. Meganathan R, Kwon O. Biosynthesis of Menaquinone (Vitamin K2) and Ubiquinone (Coenzyme Q). EcoSal Plus. 2009;3(2). doi: 10.1128/ecosalplus.3.6.3.3.
    27. Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol. 2000;182(16):4458-65. doi: 10.1128/jb.182.16.4458-4465.2000.
    28. Sorokin A, Zumstein E, Azevedo V, Ehrlich SD, Serror P. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol Microbiol. 1993;10(2):385-95. doi: 10.1111/j.1365-2958.1993.tb02670.x.
    29. Geng H, Zhu Y, Mullen K, Zuber CS, Nakano MM. Characterization of ResDE-dependent fnr transcription in Bacillus subtilis. J Bacteriol. 2007;189(5):1745-55. doi: 10.1128/jb.01502-06.
    30. Geng H, Nakano S, Nakano MM. Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. J Bacteriol. 2004;186(7):2028-37. doi: 10.1128/jb.186.7.2028-2037.2004.
    31. Baruah A, Lindsey B, Zhu Y, Nakano MM. Mutational analysis of the signal-sensing domain of ResE histidine kinase from Bacillus subtilis. J Bacteriol. 2004;186(6):1694-704. doi: 10.1128/jb.186.6.1694-1704.2004.
    32. Nakano MM, Zhu Y, Lacelle M, Zhang X, Hulett FM. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol Microbiol. 2000;37(5):1198-207. doi: 10.1046/j.1365-2958.2000.02075.x.
    33. Shaw DJ, Rice DW, Guest JR. Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli. J Mol Biol. 1983;166(2):241-7. doi: 10.1016/s0022-2836(83)80011-4.
    34. Marino M, Ramos HC, Hoffmann T, Glaser P, Jahn D. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD). J Bacteriol. 2001;183(23):6815-21. doi: 10.1128/JB.183.23.6815-6821.2001.
    35. Fisher SH. Utilization of Amino Acids and Other Nitrogen-Containing Compounds. 2014:221-8.
    36. Hoffmann T, Troup B, Szabo A, Hungerer C, Jahn D. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett. 1995;131(2):219-25. doi: 10.1111/j.1574-6968.1995.tb07780.x.
    37. Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M. Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet. 1990;222(1):104-11. doi: 10.1007/bf00283030.
    38. Zakian S, Lafitte D, Vergnes A, Pimentel C, Sebban-Kreuzer C, Toci R, et al. Basis of recognition between the NarJ chaperone and the N-terminus of the NarG subunit from Escherichia coli nitrate reductase. FEBS J. 2010;277(8):1886-95. doi: 10.1111/j.1742-4658.2010.07611.x.
    39. Nakano MM, Hoffmann T, Zhu Y, Jahn D. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J Bacteriol. 1998;180(20):5344-50.
    40. Hoffmann T, Frankenberg N, Marino M, Jahn D. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J Bacteriol. 1998;180(1):186-9.
    41. Nakano MM, Yang F, Hardin P, Zuber P. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J Bacteriol. 1995;177(3):573-9. doi: 10.1128/jb.177.3.573-579.1995.
    42. Ogawa K, Akagawa E, Yamane K, Sun ZW, LaCelle M, Zuber P, et al. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol. 1995;177(5):1409-13. doi: 10.1128/jb.177.5.1409-1413.1995.
    43. Ji XB, Hollocher TC. Reduction of nitrite to nitric oxide by enteric bacteria. Biochem Biophys Res Commun. 1988;157(1):106-8. doi: 10.1016/s0006-291x(88)80018-4.
    44. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2(10):820-32. doi: 10.1038/nrmicro1004.
    45. Gardner AM, Gardner PR. Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J Biol Chem. 2002;277(10):8166-71. doi: 10.1074/jbc.M110470200.
    46. Tucker NP, Hicks MG, Clarke TA, Crack JC, Chandra G, Le Brun NE, et al. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One. 2008;3(11):e3623. doi: 10.1371/journal.pone.0003623.
    47. D'Autreaux B, Tucker NP, Dixon R, Spiro S. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature. 2005;437(7059):769-72. doi: 10.1038/nature03953.
    48. Gardner AM, Helmick RA, Gardner PR. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J Biol Chem. 2002;277(10):8172-7. doi: 10.1074/jbc.M110471200.
    49. Hutchings MI, Mandhana N, Spiro S. The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol. 2002;184(16):4640-3. doi: 10.1128/jb.184.16.4640-4643.2002.
    50. Tucker NP, D'Autreaux B, Studholme DJ, Spiro S, Dixon R. DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in diverse proteobacteria. J Bacteriol. 2004;186(19):6656-60. doi: 10.1128/JB.186.19.6656-6660.2004.
    51. Yukl ET, Elbaz MA, Nakano MM, Moenne-Loccoz P. Transcription Factor NsrR from Bacillus subtilis Senses Nitric Oxide with a 4Fe-4S Cluster (dagger). Biochemistry. 2008;47(49):13084-92. doi: 10.1021/bi801342x.
    52. Gardner PR, Gardner AM, Martin LA, Salzman AL. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci U S A. 1998;95(18):10378-83. doi: 10.1073/pnas.95.18.10378.
    53. Hausladen A, Gow AJ, Stamler JS. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc Natl Acad Sci U S A. 1998;95(24):14100-5. doi: 10.1073/pnas.95.24.14100.
    54. Poole RK. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans. 2005;33(Pt 1):176-80. doi: 10.1042/BST0330176.
    55. Nakano MM. Induction of ResDE-dependent gene expression in Bacillus subtilis in response to nitric oxide and nitrosative stress. J Bacteriol. 2002;184(6):1783-7. doi: 10.1128/jb.184.6.1783-1787.2002.
    56. Hartig E, Jahn D. Regulation of the anaerobic metabolism in Bacillus subtilis. Adv Microb Physiol. 2012;61:195-216. doi: 10.1016/B978-0-12-394423-8.00005-6.
    57. Kommineni S, Yukl E, Hayashi T, Delepine J, Geng H, Moenne-Loccoz P, et al. Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter. Mol Microbiol. 2010;78(5):1280-93. doi: 10.1111/j.1365-2958.2010.07407.x.
    58. Wang E, Ikonen TP, Knaapila M, Svergun D, Logan DT, von Wachenfeldt C. Small-angle X-ray scattering study of a Rex family repressor: conformational response to NADH and NAD+ binding in solution. J Mol Biol. 2011;408(4):670-83. doi: 10.1016/j.jmb.2011.02.050.
    59. Wang E, Bauer MC, Rogstam A, Linse S, Logan DT, von Wachenfeldt C. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol. 2008;69(2):466-78. doi: 10.1111/j.1365-2958.2008.06295.x.
    60. Nakano MM, Dailly YP, Zuber P, Clark DP. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J Bacteriol. 1997;179(21):6749-55. doi: 10.1128/jb.179.21.6749-6755.1997.
    61. Cruz Ramos H, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, et al. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol. 2000;182(11):3072-80. doi: 10.1128/jb.182.11.3072-3080.2000.
    62. Renna MC, Najimudin N, Winik LR, Zahler SA. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993;175(12):3863-75. doi: 10.1128/jb.175.12.3863-3875.1993.
    63. Nicholson WL. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol. 2008;74(22):6832-8. doi: 10.1128/aem.00881-08.
    64. Okegawa Y, Motohashi K. A simple and ultra-low cost homemade seamless ligation cloning extract (SLiCE) as an alternative to a commercially available seamless DNA cloning kit. Biochem Biophys Rep. 2015;4:148-51. doi: 10.1016/j.bbrep.2015.09.005.
    65. Nakano MM, Zuber P, Glaser P, Danchin A, Hulett FM. Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. J Bacteriol. 1996;178(13):3796-802. doi: 10.1128/jb.178.13.3796-3802.1996.
    66. Elferink MG, Hellingwerf KJ, Konings WN. The role of the proton motive force and electron flow in solute transport in Escherichia coli. Eur J Biochem. 1985;153(1):161-5. doi: 10.1111/j.1432-1033.1985.tb09282.x. PubMed PMID: 2415360.
    67. Nicholls DG, Ferguson SJ. Bioenergetics. Amsterdam; Boston; Hedelberg [etc]: Elsevier Science & Technology Books; 2013.
    68. Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr. 2019;7(3). doi: 10.1128/microbiolspec.GPP3-0032-2018.
    69. Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, et al. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem. 2012;55(8):3739-55. doi: 10.1021/jm201608g.
    70. Benkovic SJ, Baker SJ, Alley MR, Woo YH, Zhang YK, Akama T, et al. Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH. J Med Chem. 2005;48(23):7468-76. doi: 10.1021/jm050676a.
    71. Puffal J, Mayfield JA, Moody DB, Morita YS. Demethylmenaquinone Methyl Transferase Is a Membrane Domain-Associated Protein Essential for Menaquinone Homeostasis in Mycobacterium smegmatis. Front Microbiol. 2018;9:3145. doi: 10.3389/fmicb.2018.03145.
    72. Sukheja P, Kumar P, Mittal N, Li SG, Singleton E, Russo R, et al. A Novel Small-Molecule Inhibitor of the Mycobacterium tuberculosis Demethylmenaquinone Methyltransferase MenG Is Bactericidal to Both Growing and Nutritionally Deprived Persister Cells. mBio. 2017;8(1). doi: 10.1128/mBio.02022-16.
    73. Clements LD, Streips UN, Miller BS. Differential proteomic analysis of Bacillus subtilis nitrate respiration and fermentation in defined medium. Proteomics. 2002;2(12):1724-34. doi: 10.1002/1615-9861(200212)2:12<1724::AID-PROT1724>3.0.CO;2-S.

    下載圖示 校內:2024-01-01公開
    校外:2024-01-01公開
    QR CODE