簡易檢索 / 詳目顯示

研究生: 張家聞
Chang, Chia-Wen
論文名稱: 表面改質銅管對於震盪式熱管之影響
Effects of surface modification in a closed loop oscillating heat pipe
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 親疏水表面改質閉迴路震盪式熱管熱阻震盪頻率
外文關鍵詞: Oscillating heat pipe, Surface modification, Thermal resistance, Frequency analysis
相關次數: 點閱:141下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要比較三種不同模組震盪式熱管:未改質純銅震盪式熱管(θ_c≈108°)、全親水改質震盪式熱管(θ_c≈47°)及蒸發段改質親水性表面搭配絕熱段與冷凝段疏水性表面(θ_c≈130°)的混合型改質震盪式熱管。於相同的操作條件下,改變加熱功率,探討表面改質對於震盪式熱管的影響。在實驗結果中發現,未改質純銅震盪式熱管的熱阻值均為三種模組之中最低值;而混合型改質震盪式熱管會在100W時開始由不規則震盪流轉變為單一方向循環流,此時熱阻會開始低於全親水改質。在本研究中,利用溫度數據分析及瞬時頻率強度圖搭配,分析管內的震盪頻率,發現到在未改質純銅震盪式熱管中,震盪頻率皆為三組最高值,推測此種高震盪頻率的傳熱方式,正是未改質純銅震盪式熱管熱阻為最低值的原因。然而對比全親水改質震盪式熱管與混合型改質震盪式熱管,發現到此兩組的震盪頻率是相當的,但是熱阻卻有所差異,因此推測除了震盪頻率是熱傳影響的關鍵外,管內的流譜變化亦會是一個重要的因素。

    This paper presents an experimental investigation of whether heat-transfer performance in a closed loop oscillating heat pipe (OHP) would improve if the inner surface has been modified. In this study, three different wettability surfaces of OHP systems have been tested: pure copper surface (θ_c≈〖108〗^°), hydrophilic surface (θ_c≈〖47〗^°) and hybrid OHP with hydrophilic evaporator and superhydrophobic (θ_c≈〖130〗^°) condenser. By increasing heat input, we investigated the thermal resistance of these different modules of OHP. The results show that with the same heat input, the pure copper surface OHP has the lowest thermal resistance; and the pure copper surface OHP has the highest frequency among the three types. It seems that the method of the surface modification in this paper would reduce the frequency of the OHP system; nevertheless, if we compare the hydrophilic surface OHP and the hybrid OHP, when the heat input reached 100W, the hybrid OHP has lower thermal resistance than the hydrophilic surface one. This is because when heat input reached 100W, the flow pattern in the hybrid OHP would change from oscillation to circulation.

    摘要 I 誌謝 VII 目錄 IX 圖目錄 XII 表目錄 XV 符號說明 XVI 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2.1 基本OHP系統分析 3 1-2.2 循環流相關文獻 4 1-2.3 表面改質於OHP文獻 5 1-3 研究動機及目的 7 第2章 理論基礎 16 2-1 作動原理 16 2-2 熱傳機制 17 2-3 管內流譜 18 2-4 熱通量與震盪式熱管關係 20 2-5 設計參數 22 第3章 實驗設計與方法 33 3-1 實驗設備 33 3-2 管內表面改質製程 38 3-2.1 親水表面模組 38 3-2.2 疏水表面模組 39 3-2.3 混合型表面模組 40 3-3 實驗方法 42 3-3.1 抽真空及填充方法 42 3-3.2 熱傳性能實驗方法 43 第4章 實驗結果與討論 51 4-1 震盪式熱管系統熱傳實驗結果 51 4-1.1 未改質純銅OHP系統 51 4-1.2 全親水改質OHP系統 52 4-1.3 混合型改質OHP系統 53 4-2 表面改質對熱傳性能之影響 55 4-3 OHP系統震盪頻率分析 58 4-3.1 溫度數據分析 58 4-3.2 快速傅立葉轉換及希爾伯特-黃轉換 61 第5章 總結與未來展望 79 5-1 結論 79 5-2 未來展望 81 參考文獻 83

    [1] H. Akachi, "Structure of a heat pipe," 1990.
    [2] S. Khandekar and M. Groll, "An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes," International Journal of Thermal Sciences, vol. 43, pp. 13-20, 2004.
    [3] V. K. Karthikeyan, S. Khandekar, B. C. Pillai, and P. K. Sharma, "Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states," Applied Thermal Engineering, vol. 62, pp. 470-480, 2014.
    [4] S. Khandekar, N. Dollinger, and M. Groll, "Understanding operational regimes of closed loop pulsating heat pipes: an experimental study," Applied Thermal Engineering, vol. 23, pp. 707-719, 2003.
    [5] Q. Cai, C. Chen, and J. F. Asfia, "Operating Characteristic Investigations in Pulsating Heat Pipe," Journal of Heat Transfer, vol. 128, p. 1329, 2006.
    [6] I. Yoon, C. Wilson, B. Borgmeyer, R. A. Winholtz, H. B. Ma, D. L. Jacobson, et al., "Neutron phase volumetry and temperature observations in an oscillating heat pipe," International Journal of Thermal Sciences, vol. 60, pp. 52-60, 2012.
    [7] M. Mameli, M. Marengo, and S. Khandekar, "Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe," International Journal of Thermal Sciences, vol. 75, pp. 140-152, 2014.
    [8] N. Saha, P. K. Das, and P. K. Sharma, "Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe," International Journal of Heat and Mass Transfer, vol. 74, pp. 238-250, 2014.
    [9] Y. Ji, H. Chen, Y. J. Kim, Q. Yu, X. Ma, and H. B. Ma, "Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe," Journal of Heat Transfer, vol. 134, p. 074502, 2012.
    [10] Y. Ji, C. Xu, H. Ma, and P. Xinxiang, "An Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Copper Oxide (CuO) Microstructure Layer on the Inner Surface," Journal of Heat Transfer, vol. 135, p. 074504, 2013.
    [11] T. Hao, X. Ma, Z. Lan, N. Li, Y. Zhao, and H. Ma, "Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe," International Journal of Heat and Mass Transfer, vol. 72, pp. 50-65, 2014.
    [12] C.Y. Lee, "Effects of Surface Modification on the Performance of a Closed Loop Oscillating Heat Pipe," vol. Department of Aeronautics and Astonautics, National Cheng Kung University, 2013.
    [13] C. H. Wu, "Experimental Studies of Two Phase Flow Behaviors and Heat Transfer within Surface Modified Oscillating Heat Pipes," vol. Department of Aeronautics and Astonautics, National Cheng Kung University, 2015.
    [14] S. Khandekar, A. P. Gautam, and P. K. Sharma, "Multiple quasi-steady states in a closed loop pulsating heat pipe," International Journal of Thermal Sciences, vol. 48, pp. 535-546, 2009.
    [15] X. Cui, Y. Zhu, Z. Li, and S. Shun, "Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe," Applied Thermal Engineering, vol. 65, pp. 394-402, 2014.
    [16] L. Cheng, G. Ribatski, and J. R. Thome, "Two-Phase Flow Patterns and Flow-Pattern Maps: Fundamentals and Applications," Applied Mechanics Reviews, vol. 61, p. 050802, 2008.
    [17] S. Khandekar, X. Cui, and M. Groll, "Thermal performance modeling of pulsating heat pipes by artificial neural network," 2002.
    [18] E. T. White and R. H. Beardmore, "The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes, Chemical Engineering Science," vol. 17, pp. 351-361, 1962.
    [19] G. Karimi and J. R. Culham, "Review and assessment of Pulsating Heat Pipe mechanism for high heat flux electronic cooling," vol. 52-59, 2004.
    [20] B. S. Taft, A. D. Williams, and B. L. Drolen, "Review of Pulsating Heat Pipe Working Fluid Selection," Journal of Thermophysics and Heat Transfer, vol. 26, pp. 651-656, 2012.
    [21] S. Khandekar, "Pulsating heat pipe based heat exchangers," The 21st International Symposium on Transport Phenomena, 2010.
    [22] M. Hongbin, "Oscillating Heat Pipes," p. 146, 2015.
    [23] S. Khandekar, "Thermofluid Dynamic Study of Flat-Plate Closed-Loop Pulsating Heat Pipes," Microscale Thermophysical Engineering, vol. 6, pp. 303-317, 2003.
    [23] A. Faghri, "Heat Pipe Science and Technology," Taylor & Francis, USA, pp. 21-22, 1995.
    [24] C. D. Patel, G. R. Selokar and A. Paul, "Pulsating Heat Pipe Based Heat Exchanger, " International Journal of Engineering Research and Science & Technology, Vol. 1, (1), pp. 11-18, 2012.

    下載圖示 校內:2017-06-30公開
    校外:2019-06-30公開
    QR CODE