簡易檢索 / 詳目顯示

研究生: 楊守剛
Yang, Shou-Gang
論文名稱: 飛行甲板風場特性量測之機構設計與驗證量測技術分析
Development and Validation of a Measurement Mechanism and technique for Characterizing Flight Deck Wind Field Properties
指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 78
中文關鍵詞: 飛行甲板風場超音波風速計校正紊流強度分析
外文關鍵詞: Flight deck wind field, ultrasonic anemometer calibration, turbulence intensity analysis
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號索引 XVI 第一章 序論 1 1.1 前言 1 1.2 研究背景與動機 1 第二章 文獻回顧 3 2.1 船艦幾何外型對飛行甲板尾流的影響 3 2.2 波浪對船艦風場的影響 6 2.3 來流角度對飛行甲板速度分佈影響 7 2.4 實體船艦量測飛行甲板風場的重要性 9 2.5 風速計安裝位置對量測數據之影響 10 2.6 風速計校正 11 第三章 風場量測儀器校正 13 3.1 實驗儀器與設備 13 3.1.1 超音波風速計規格 13 3.1.2 熱線風速計 14 3.1.3 資料擷取系統 14 3.1.4 低速環境風洞 15 3.1.5 超音波風速計夾具 15 3.2 校正超音波風速計 16 3.2.1 校正程序及參數設定 16 3.2.2 資料分析方法 16 3.3 超音波風速計校正分析 17 3.3.1 風速5m/s風向0度 17 3.3.2 風速5m/s風向30度 19 3.3.3 風速5m/s風向45、60、75度 22 3.3.4 風速5m/s風向90度 22 3.3.5 風速10m/s風向0度 25 3.3.6 風速10m/s風向30度 26 3.3.7 風速10m/s風向45、60、75度 27 3.3.8 風速10m/s風向90度 30 3.4 超音波風速計校正結果 31 第四章 風場量測儀器設備車載平台陸上測試 34 4.1 風場量測儀器設備安裝 34 4.1.1 陸上測試:相對風速F1m/s、風角A度 35 4.1.2 陸上測試:相對風速F2m/s、風角A度 37 4.1.3 陸上測試:相對風速F3m/s、風角A度 40 4.1.4 陸上測試:相對風速F4m/s、風角A度 41 4.1.5 陸上測試:相對風速F1m/s、風角B度 42 4.1.6 陸上測試:相對風速F2m/s、風角B度 43 4.1.7 陸上測試:相對風速F3m/s、風角B度 45 4.1.8 陸上測試:相對風速F4m/s、風角B度 47 4.1.9 陸上測試:相對風角C度,各速度綜合分析 49 4.1.10 陸上測試:相對風角D度,各速度綜合分析 51 4.1.11 陸上測試:相對風角E度,各速度綜合分析 52 4.2 車載平台實測結果 54 第五章 結論與未來展望 57 參考文獻 59

    [1]D. Roper, I. Owen, G. Padfield, and S. Hodge, "Integrating CFD and piloted simulation to quantify ship-helicopter operating limits," The Aeronautical Journal, vol. 110, no. 1109, pp. 419-428, 2006.
    [2]C. J. Brownell, L. Luznik, M. R. Snyder, H. S. Kang, and C. H. Wilkinson, "In situ velocity measurements in the near-wake of a ship superstructure," Journal of aircraft, vol. 49, no. 5, pp. 1440-1450, 2012.
    [3]H. S. Kang, M. R. Snyder, D. S. Miklosovic, and C. Friedman, "Comparisons of in situ ship air wakes with wind tunnel measurements and computational fluid dynamics simulations," Journal of the American Helicopter Society, vol. 61, no. 2, pp. 1-16, 2016.
    [4]J. Forrest, C. Kaaria, and I. Owen, "Evaluating ship superstructure aerodynamics for maritime helicopter operations through CFD and flight simulation," The Aeronautical Journal, vol. 120, no. 1232, pp. 1578-1603, 2016.
    [5]J. S. Forrest, I. Owen, G. D. Padfield, and S. J. Hodge, "Ship-helicopter operating limits prediction using piloted flight simulation and time-accurate airwakes," Journal of Aircraft, vol. 49, no. 4, pp. 1020-1031, 2012.
    [6]D. Findlay and T. Ghee, "Experimental investigation of ship airwake flow control for a US Navy flight II-A class destroyer (DDG)," in 3rd AIAA Flow control conference, 2006, p. 3501.
    [7]楊昀叡 and 陳政宏, "船艦機庫幾何構型對直升機起降甲板風場結構之影響," 中國造船暨輪機工程學刊, vol. 39, no. 2, pp. 51-62, 2020.
    [8]A. Nisham, M. Terziev, T. Tezdogan, T. Beard, and A. Incecik, "Prediction of the aerodynamic behaviour of a full-scale naval ship in head waves using Detached Eddy Simulation," Ocean Engineering, Article vol. 222, 2021, Art no. 108583, doi: 10.1016/j.oceaneng.2021.108583.
    [9]A. Wall, E. Thornhill, H. Barber, S. McTavish, and R. Lee, "Experimental investigations into the effect of at-sea conditions on ship airwake characteristics," Journal of Wind Engineering and Industrial Aerodynamics, vol. 223, 2022 2022, Art no. 104933, doi: 10.1016/j.jweia.2022.104933.
    [10]I. Owen, R. Lee, A. Wall, and N. Fernandez, "The NATO generic destroyer – a shared geometry for collaborative research into modelling and simulation of shipboard helicopter launch and recovery," Ocean Engineering, vol. 228, p. 108428, 2021/05/15/ 2021, doi: https://doi.org/10.1016/j.oceaneng.2020.108428.
    [11]R. B. Mora, "Experimental investigation of the flow on a simple frigate shape (SFS)," The scientific world journal, vol. 2014, no. 1, p. 818132, 2014.
    [12]B. Thornber, M. Starr, and D. Drikakis, "Implicit large eddy simulation of ship airwakes," The Aeronautical Journal, vol. 114, no. 1162, pp. 715-736, 2010.
    [13]M. Rahimpour and P. Oshkai, "Experimental investigation of airflow over the helicopter platform of a polar icebreaker," Ocean Engineering, vol. 121, pp. 98-111, 2016.
    [14]B. Moat and M. Yelland, "Airflow distortion at anemometer sites on the OWS Polarfront," 2009.
    [15]S. Popinet, M. Smith, and C. Stevens, "Experimental and numerical study of the turbulence characteristics of airflow around a research vessel," Journal of Atmospheric and Oceanic Technology, vol. 21, no. 10, pp. 1575-1589, 2004.
    [16]U. Högström and A.-S. Smedman, "Accuracy of sonic anemometers: laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument," Boundary-layer meteorology, vol. 111, pp. 33-54, 2004.
    [17]M. Van der Molen, J. Gash, and J. Elbers, "Sonic anemometer (co) sine response and flux measurement: II. The effect of introducing an angle of attack dependent calibration," Agricultural and Forest Meteorology, vol. 122, no. 1-2, pp. 95-109, 2004.
    [18]G. A. Mazzilli, N. Zhu, E. P. Gnanamanickam, J. G. Leishman, and Z. Zhang, "A study of extreme vertical flow fluctuations of the ship airwake," in AIAA SCITECH 2023 Forum, 2023, p. 0471.
    [19]C. H. Kääriä, Y. Wang, G. D. Padfield, J. S. Forrest, and I. Owen, "Aerodynamic loading characteristics of a model-scale helicopter in a ship's airwake," Journal of Aircraft, vol. 49, no. 5, pp. 1271-1278, 2012.
    [20]N. Zhu, Z. Zhang, E. Gnanamanickam, and J. Gordon Leishman, "Space-time characterization of ship airwakes," AIAA Journal, vol. 61, no. 2, pp. 681-697, 2023.

    無法下載圖示 校內:2030-08-19公開
    校外:2030-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE