簡易檢索 / 詳目顯示

研究生: 黃新傑
Huang, Hsin-Chieh
論文名稱: 以螢光原位雜合技術偵測甲烷氧化菌
Detection of Methanotrophs by Fluorescence in situ Hybridization Technique
指導教授: 曾怡禎
cheng, Tseng-I
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物學系
Department of Biology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 83
中文關鍵詞: 探針嚴謹度甲烷氧化菌螢光原位雜合
外文關鍵詞: hybridization stringency, methanotroph, fluorescence in situ hybridization (FISH)
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來螢光原位雜合(Fluorescence in situ hybridization, FISH)技術應用在環境土樣上,可直接觀察不同的菌群並定量菌數,對於土樣微生物社會的研究是非常有用的工具。本研究是利用甲烷氧化菌16S rRNA基因序列的專一性探針,Mγ84與Mγ705共同雜合第一型甲烷氧化菌菌群,Mα450雜合第二型甲烷氧化菌菌群。決定探針的嚴謹度(stringency),將第一型與第二型甲烷氧化菌的標準菌株Methylococcus capsulatus與Methylosinus trichosporium OB3b,用不同甲醯胺(formamide)濃度的雜合液進行雜合後,拍攝的螢光影像用軟體測量螢光訊號的強弱,發現三支探針在20%甲醯胺濃度下,雜合的菌體螢光最強。為了得知底泥雜合探針後是否會產生螢光背景干擾,將滅菌的底泥加入菌液作為實驗組,或不加菌液作為控制組,萃取後雜合探針拍攝影像,並以軟體計數數值,結果兩者並無差異,顯然底泥的背景螢光干擾會嚴重影響菌數的計數。所以本研究在探針雜合反應前處理甲苯胺藍(toluidine blue),發現可有效降低探針雜合的螢光背景干擾,但是雜合探針後再負染DAPI,卻使DAPI的影像出現嚴重的背景干擾,經由本研究的實驗發現,必須在雜合後處理甲苯胺藍再負染DAPI,才可抑制DAPI的背景螢光干擾。針對實驗過程中能萃取出多少底泥的目標菌,於是將甲烷氧化菌菌液加至已滅菌的南仁湖底泥,萃取後用探針雜合計數的菌數回收率約70~90%,底泥不加菌液的控制組,萃取後用探針雜合計數的數值佔加入的菌數之比例2~5%。底泥在萃取前要先分離土粒與菌體,所以經由震盪或超音波的處理並沉降之,取萃取液雜合探針Eub338並負染DAPI計數菌數,發現超音波處理後所萃取的菌數優於震盪處理。最後以20%CH4與0%CH4(控制組)馴養南仁湖底泥,並在不同時間點取樣雜合Eub338與甲烷氧化菌專一性探針,以計數第一型與第二型甲烷氧化菌佔所有細菌的比例,結果馴養至第十六天,甲烷氧化菌佔所有細菌的比例最高,第二型甲烷氧化菌所佔的比例約29%,第一型甲烷氧化菌所佔的比例約9%。

      The fluorescence in situ hybridization (FISH) method developed recently has great potential for quantity and quality of active populations of soil bacteria. In this study, we search firstly 16S rRNA probe sequence of methanotroph in references. To determine stringency of probe , two methanotroph strain were hybridized with specific probe. Methylococcus capsulatus was targeted with probe Mγ84 and Mγ705 design to hybridize TypeⅠmethanotroph. Methylosinus trichosporium OB3b was target with probe probe Mα450 design to hybridize TypeⅡmethanotroph. Gradually increasing hybridization stringency was performed by the addition of formamide to the hybridization buffer. The optimal formamide concentration for hybridization of three probe was determined to obtain a bright fluorescent signal by software analysis of picture. After adding methanotroph to autoclaved Nanjen lake sediment, probe hybridize extraction of sediment. Autofluorescence in sediment was quenched with toluidine blue before hybridization. But DAPI autofluorescence in sediment had to be quenched with one more toluidine blue after hybridization. In order to know how many bacteria can be extract in extraction of lake sediment. Recovery of target methanotroph cells was demonstrated to be around 70~90% after hybridize extraction of autoclaved sediment which add methanotroph. Portions of sediment were added to buffer and sonicated or shoched in order to detach bacteria from the sediment. Extraction of sediment was stained with DAPI after hybridizing with Eub338 probe and counted cell number. Cells were counted by comparing images obtained for three different single fluorescence(Eub338, Mα450, Mγ84 plus 705). The number of Eub338-positive cells counted was the sum of active cells. The percentage of TypeⅠand TypeⅡ methanotroph compared respectively to the Eub338- positive cell was count 29% and 9% in the sediment cultivated to 16 days.

    中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 目錄.....................................................Ⅲ 表目錄...................................................VI 圖目錄...................................................Ⅶ 第一章 前言..............................................1 第二章 文獻回顧..........................................2 2-1 甲烷氧化菌的介紹與分子技術的研究...................2 2-1-1 甲烷氧化菌的分類................................2 2-1-2 甲烷單氧氧化酵素................................2 2-1-3 生物復育的應用..................................3 2-1-3 分子技術的研究..................................6 2-2 螢光原位雜合法.....................................7 2-2-1 探針的設計......................................7 2-2-2 探針的嚴謹度....................................8 2-2-3 樣本雜合前處理..................................9 2-2-4 雜合反應.......................................10 2-2-5 螢光染劑的選擇.................................10 2-2-6 螢光顯微鏡的操作與軟體的分析...................12 2-3 甲烷氧化菌的專一性探針............................16 2-4 環境土樣螢光原位雜合法的研究......................18 2-4-1 萃取土樣中的細菌...............................18 2-4-2 雜合前處理.....................................21 2-4-3 土樣菌數的計數.................................22 第三章 材料與方法.......................................23 3-1 實驗流程..........................................23 3-2 實驗材料..........................................24 3-2-1 採樣地點.......................................24 3-2-2 實驗菌株來源...................................24 3-2-3 培養基.........................................24 3-2-4 藥品試劑與器材.................................24 3-2-5 主要儀器.......................................27 3-3 實驗方法...........................................28 3-3-1 純菌生長曲線的測量.............................28 3-3-2 血球計數器計數菌數.............................28 3-3-3 數位影像菌數的換算.............................30 3-3-4 數位影像的處理與套色...........................30 3-3-5 計數菌液加入滅菌底泥後萃取的菌數...............30 3-3-6 萃取底泥菌數的處理.............................31 3-3-7 底泥的馴養.....................................31 3-2-8 計數馴養後的南仁湖底泥菌數.....................32 3-2-9 螢光探針雜合與DAPI負染........................32 3-2-10 探針的嚴謹度測試..............................33 第四章 結果與討論......................................35 4-1 甲烷氧化菌專一性探針的雜合嚴謹度...................35 4-1-1 菌株的生長曲線.................................35 4-1-2 探針的雜合嚴謹度...............................35 4-2 計數加入滅菌底泥的純菌.............................37 4-2-1 消除探針雜合的螢光背景干擾.....................37 4-2-2 消除雜合後負染DAPI的螢光背景干擾.............42 4-2-3 計數純菌加至滅菌底泥的萃取回收率...............43 4-3 螢光原位雜合計數南仁湖底泥的菌數...................50 4-3-1 超音波處理南仁湖底泥...........................50 4-3-2 底泥馴養後用螢光原位雜合法計數菌數.............54 第五章 結論與建議.......................................62 第六章 參考文獻.........................................64

    許瓊文。1985。利用核酸探針與聚合酵素連鎖反應對甲烷氧化菌的偵測與計數之研究。國立成功大學生物研究所碩士論文。
    黃俊霖。1989。以分子生物技術探討厭氧生物產氫程序之菌群結構。國立中央大學環境工程研究所碩士論文。
    Amann, R., L. Krumholz, and D. A. Stahl. 1990. Fluorescent- oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172:762 –770.
    Amaral, J.A., C. Archambault, S.R. Richards, and R. Knowles. 1995. Denitrification associated with Groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiol. Ecol. 18:289-298.
    Auman, A. J., S. Stolyar, A. M. Costello, and M. E. Lidstrom. 2000. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Envir. Microbiol. 66: 5259-5266.
    Balbina N., E. R. B. Moore, E. Llobet-Brossa, R. Rossello-Mora, R. Amann, and K. N. Timmis. 2001. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Envir. Microbiol. 67: 1874-1884.
    Binnerup, S., J. Bloem, B. M. Hansen, W. Wolters, M. Veninga, and M. Hansen. 2001. Ribosomal RNA content in microcolony forming soil bacteria measured by quantitative 16S rRNA hybridization and image analysis. FEMS Microbiology Ecology 37 : 231-237.
    Bloem, J., M Veninga, and J Shepherd. 1995.Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl. Envir. Microbiol. 61: 926-936.
    Bourne, D. G., A. J. Holmes, N. Iversen, and J. C. Murrell. 2000. Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. FEMS Microbiol. Ecol. 31:29-38.
    Brown-Howland, E. B., S. A. Danielsen, and S. A. Nierzwicki-Bauer. 1992. Development of a rapid method for detecting bacterial cells in situ using 16S-targeted probes. BioTechniques. 13:928-933.
    Brusseau, G.. A., E. S. Bulygina, and R. S. Hanson. 1994. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria Appl. Envir. Microbiol. 60: 626-636.
    Cheng, Y. S., J. L. Halsey, K. A. Fode, C. C. Remsen, and M. L. P. Collins. 1999. Detection of methanotrophs in groundwater by PCR. Appl. Envir. Microbiol. 65: 648-651.
    Christensen, H., and L. K. Poulsen. 1994. Detection of Pseudomonas in soil by rRNA targeted in-situ hybridization technique. Soil Biol. Biochem. 26:1093-1096.
    Christensen, H., Michael Hansen, and Jan Sørensen. 1999. Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Envir. Microbiol. 65: 1753-1761.
    Cicerone, R. J. 1988. Greenhouse-effect-methane linked to warming. Nature 334:198.
    Costello, A. M., and M. E. Lidstrom. 1999. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl. Envir. Microbiol. 65: 5066-5074.
    Daims, H., A. Bruhl, R. Amann, K.-H. Schleifer, and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all bacteria : development and evaluation of a more comprehensive probe set. System. Appl. Microbiol. 22:434-444.
    Dedysh, S. N., W. Liesack, V. N. Khmelenina, N. E. Suzina, Y. A. Trotsenko, J. D. Semrau, A. M. Bares, N. S. Panikov, and J. M. Tiedje. 2000. Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int. J. Syst. Evol. Microbiol. 50:955–969.
    Deere, D., G. Vesey, N. Ashbold, K. A. Davies, K. L. Williams, and D. Veal. 1998. Evaluation of fluorochromes for flow cytomeric detection of Cryptosporidium parvum oocysts labeled by fluorescence in situ hybridization. Lett. Appl. Microbiol. 27:352-356.
    DeLong, E. F., G. S. Wickham, and N. R. Pace. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360-1363.
    Eller, G., S. Stubner, and P. Frenzel. (a)2001. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol. Letters 198:91-97.
    Eller, G, and P. Frenzel. (b)2001. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl. Envir. Microbiol. 67:2395-2403.
    Ernst, L. A. R. K. Gupta, R. B, Mujumdar, and A. S. Waggoner. 1989. Ctanine dye labeling reagents for sulfhydryl groups. Cytometry 10:3-10.
    Fuchs, B. M., F. O. Glöckner, J. Wulf, and R. Amann. 2000. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Envir. Microbiol. 66: 3603-3607.
    Fuchs, B. M., G. Wallner, W. Beisker, I. Schwippl, W. Ludwig, and R. Amann. 1998. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Envir. Microbiol. 64: 4973-4982.
    Graack H.-R. and H. Kress. 1999. Empirical midpoint dissociation temperature(Td) determination for oligonucleotide probes using a PCR thermal cycler. BioTechniques 27:666-670.
    Gulledge, J., A. Ahmad, P. A. Steudler, W. J. Pomerantz, and C. M. Cavanaugh. 2001. Family- and genus-Level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl. Envir. Microbiol. 67:4726-4733.
    Hahn, D., R. Amann, and J. zeyer. 1993. Whole-cell hybridization of Frankia strain with fluorescence- or digoxigenin-labeled, 16S rRNA-targeted oligonucleotide probes. Appl. Envir. Microbiol. 59: 1709-1716.
    Hahn, D., R. I. Amann, W. Ludwig, A. D. L. Akkermans, and K. H. Schleifer. 1992. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J. Gen. Microbiol. 138:879-887.
    Hanson R. S. and T. E. Hanson. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
    Henckel, T., M. Friedrich, and R. Conrad. 1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase . Appl. Envir. Microbiol. 65: 1980-1990.
    Henckel, T., U. Jäckel, S. Schnell, and R. Conrad. 2000. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Envir. Microbiol. 66: 1801-1808.
    Henrik C., M. Hansen, and J. Sørensen. 1999. counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Envir. Microbiol. 65: 1753-1761.
    Heyer, J., V. F. Galchenko, and P. F. Dunfield. 2002. Molecular phylogeny of type II methaneoxidizing bacteria isolated from various environments. Microbiology 148:2831–2846.
    Hodson, R. E., J. K. Jansson, B. K. Chelm, and J. M. Tiedje.1988. DNA probe method for the detection of specific microorganisms in the soil bacteria community. Appl. Environ. Microbiol. 54:703-711.
    Holmes, A. J., N. J. Owens, and J. C. Murrell. 1995. Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiol. 141:1947-1955.
    Holmes, A. J., Owens, N. J. P. Owens, and J. C. Murrell. 1996. Molecular analysis of enrichment cultures of marine methane oxidising bacteria. J. Experimental Marine Biol. and Ecol. 230:27-38.
    Horvath, R. S. 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriological Review 36:146-155.
    Jensen, S., A. J. Holmes, R. A. Olsen, and J. C. Murrell. 2000. Detection of methane oxidizing bacteria in forest soil by monooxygenase PCR amplification. Microb. Ecol. 39: 282-289.
    Jurtshuk, R. J., M. Blick, J. Bresser, G. E. Pox, and P. Jurtshuk. 1992. Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans. Appl. Envir. Microbiol. 58: 2571-2578.
    Karner, M., E. F. DeLong, and D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507-509.
    Kung-Hui, C. and L. Alvarez-Cohen. 1998. Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria. Appl. Envir. Microbiol. 64:3451-3457.
    Lee, N., P. H. Nielsen, K. H. Andreasen, S. Juretschko, J. L. Nielsen, K. Schleifer, and M. Wagner. 1999. Combination of fluorescent in situ hybridization and microautoradiography- a new tool for structure-function analyses in microbial ecology. Appl. Envir. Microbiol. 65: 1289-1297.
    Manz, W., R. Amann, W. Ludwig, M. Vancanneyt, and K. H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter- bacteroides in the natural environment. Microbiology 142:1097-1106.
    Martin, H., Brandt, Kristian K.; Sørensen. 2001. Quantification of ammonia
    oxidizing bacteria in soil using microcolony technique combined with
    fluorescence in situ hybridization (MCFU–FISH). FEMS Microbiology
    Ecology 38: 87-95.
    McCarty, P. L. 1994. Ground-water treatment for chlorinated solvents, p. 87-116. In J. E. Matthews (ed.), Handbook of bioremediation. Lewis Publishers, Ann Arbor, Mich.
    McDonald, I. R., E. M. Kenna, and J. C. Murrell. 1995. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol. 61:116-121.
    McConaughy, B.L., C. D. Laird, and B. J. McCarthy. 1969. Nucleic acid reassociation in formamide. Biochemistry 8:3289-3295.
    Moran, B. N., and W. J. Hickey. 1997. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms. Appl. Envir. Microbiol. 63: 3866-3871.
    Moter, A., G. Leist, R. Rudolph, K. Schrank, B. K. Choi, M. Wagner, and U. B. Gobel. 1998. Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. Microbiology. 144: 2459-2467.
    Nicholson W. L., and P. Setlow. 1990. Sporulation, germination and outgrowth. In: harwood CR, cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp391-450
    Nogales, B., Edward R. B. Moore, Enrique Llobet-Brossa, Ramon Rossello-Mora, Rudolf Amann, and Kenneth N. Timmis. 2001. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Envir. Microbiol. 67: 1874-1884.
    Oldenhuis, R., J. M. Vink, D. B. Jassen, and B. Withilt. 1989. Degradation of chlorinated aliphatic hydrocarbon by Methylosinus triphosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55:2819-2826.
    Olsen, G. J., D. J. Lane, S. J. Giovannoni, N. R. Pace, and D. A. Stahl. 1987. Microbial ecology and evolution : a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337.
    Pandey, G., and R. K. Jain. 2002. Bacterial chemotaxis toward environmental Pollutants : role in bioremediation. Appl. Envir. Microbiol. 68: 5789-5795.
    Pernthaler, A., J. Pernthaler, and Rudolf Amann. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Envir. Microbiol. 68: 3094-3101.
    Poulsen, L. K. 1995. Protocol for the use of fluorescently labeled oligonucleotide probes- determination of bacterial identity, activity, and gene expression. Department of Microbiology, Denmark. pp1-18.
    Poulsen, L. K., G. Ballard, and D. A. Stahl. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilm. Applied and Environmental Microbiology 59:1354-1360
    Poulsen, L.K., Lan, F., Kristensen, C.S., Hobolth, P., Molin, S. and Krogfelt, K. 1994. Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridisation. Infect. Immun. 62:5191-5194.
    Richard, S. H. and T. E. Hanson. 1996. Methanotrophic Bacteria. Microbiol. Rev. 60:439-471.
    Rocheleau, S., C. W. Greer, J. R. Lawrence, C. Cantin, L. Laramee,
    and S. R. Guiot. 1999. Differentiation of methanosaeta concilii and
    methanosarcina barkeri in anaerobic mesophilic granular sludge by
    fluorescent in situ hybridization and confocal scanning laser
    microscopy. Appl. Environ.Microbiol. 65:2222-2229.
    Roller, C., M. Wagner, R. Amann, W. Ludwig and K. H. Schleifer. 1994. In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA targeted oligonucleotides. Microbiology 140:2849-2858
    Sabine, W., S. Stubner, and R. Conrad. 2001. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl. Envir. Microbiol. 2001 67: 1318-1327.
    Sandaa, R., Øivind Enger, and Vigdis Torsvik. 1999. Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl. Envir. Microbiol. 65:3293-3297.
    Schonhuber, W., B. Fuchs, S. Juretschko, and R. Amann. 1997. Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl. Envir. Microbiol. 63:3268-3273.
    Shigenatsu, T., S. Hanada, M. Eguchi, Y. Kanagata, T. Kanagawa, and R. kurane. 1999. Soluble Methane Monooxygenase Gene Clusters from
    Trichloroethylene-Degrading Methylomonas sp. Strains and Detection of Methanotrophs during In Situ Bioremediation. Appl. Envir. Microbiol. 65:5198-5206.
    Shu, L., J. Nesheim, K. Kauffmann, E. Munck, J. Lipscomb, and L. Que. 1997. An Fe2(IV)O4 diamond core structure for the key intermediate Q of the methane monooxygenase. Science 24:515-517.
    Sorensen, A.H., Torsvik, V.L., Torsvik, T., Poulsen, L.K. and Ahring, B.K. 1997. Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes. Appl. Environ. Microbiol. 63:3043-3050.
    Spear, R. N., S. Li., E. V. Nordheim, and J. H. Andrews. 1999. Quantitative imaging and statistical analysis of fluorescence in situ hybridization(FISH) of Aureobasidium pullulans. J. Microbiol. Methods. 35:101-110.
    Svend, J. B., Bloem, Jaap; Hansen, Bjarne Munk; Wolters, Wim;
    Veninga, Meint; et. al. 2001. Ribosomal RNA content in microcolony
    forming soil bacteria measured by quantitative 16S rRNA hybridization
    and image analysis. FEMS Microbiology Ecology 37:231-237.
    Svetlana, N. D., M. Derakshani, and W. Liesack. 2001. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl. Envir. Microbiol. 67: 4850-4857.
    Tani, K., K. Kurokawa, and M. Nasu. 1998. Development of a direct in situ PCR method for detection of specific bacteria in natural environments. Appl. Envir. Microbiol. 64:1536-1540.
    Tsien, H.C., B. J., Bratina, K. Tsuji, and R. S. Hanson. 1990. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl. Environ. Microbiol. 56:2858-2865.
    Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedl, K.-H. Schleifer. 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Envir. Microbiol. 60: 792-800.
    Wagner, M., S. Michael, J. Stefan, K. Trebesius, and B. Andreas. 1998. In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiology Letters 160:159-168.
    Weber, S., Stephan Stubner, and Ralf Conrad. 2001. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl. Envir. Microbiol. 67: 1318-1327.
    Wessendorf, M. W., and T. C. Brelje. 1992. Which fluorophore is the brightest? A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas Red, and cyanine 3.18. Histochemistry. 98:81-85.
    Whittenbury, R., K. C. Phillips, and T. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61:205-218
    Wise, M., G., J. V. Mcarthur, and L. J. Shimkets. 1999. Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II Methanotrophs Whose Presence Was Suggested by Culture-Independent 16S Ribosomal DNA Analysis. Appl. Envir. Microbiol. 65: 4887-4897.
    Woese, C. R. 1987. Bacteria evolution. Microbiol. Rev. 51:221-271
    Zarda, B., R. Amann, W. Wallner, and K. H. Schleifer. 1991. Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J. Gen. Microbiol. 137:2823-2830.
    Zarda, B., D. Hahn, A. Chatzinotas, W. Schönhuber, A. Neef, R. A. Amann, and J. Zeyer. 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch. Microbiol. 168:185-192.
    Zheng, D., and E. W. Alm, D. A. Stahl, and L. Raskin. 1996. Characterization of universal small- subunit rRNA Hybridization probes for quantitative molecular microbial ecology studies. Appl. Envir. Microbiol. 62: 4504-453.
    Zhuang, W. Q., J. H. Tay, A. M. Maszenan, and S. T.-L. Tay. 2002. Bacillus naphthovorans sp. nov. from oil-contaminated tropical marine sediments and its role in naphthalene biodegradation. Applied Microbiology Biotechology(original paper).
    Zimmer, C., and U. Wahnert. 1986. Nonintercalating DNA-binding ligands:specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic materials. Prog. Biophys. Mol. Biol. 47:31-112.

    下載圖示 校內:2006-08-27公開
    校外:2006-08-27公開
    QR CODE