| 研究生: |
廖經元 Liao, Jing-Yuan |
|---|---|
| 論文名稱: |
以應變能密度理論分析含中央裂縫之功能梯度平面問題 Analysis of a Functionally Graded Plane with a Central Crack by Using Strain Energy Density Theory |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 裂縫 、功能梯度材料 、面內問題 、應力強度因子 、應變能密度因子 |
| 外文關鍵詞: | crack, functionally graded materials, in-plane problem, stress intensity factor, strain energy density factor |
| 相關次數: | 點閱:143 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用應變能密度理論分析無窮功能梯度平面嵌入一中央裂縫,並改變裂縫面上的邊界負載,探討裂縫即將開裂時其裂出角度。材料的蒲松氏比為一定值,但功能梯度曲線可任意旋轉,材料性質沿任意方向做指數型函數變化。承接Konda and Erdogan (1994)的研究,利用Gauss-Chebyshev積分方法將積分方程式展開為一組線性的代數方程式進行數值求解,可求出裂縫尖端第I型與第II型的無因次應力強度因子,並將數值解結果與文獻相互驗證,證明所推導之公式其可用性。再將不同邊界負載下所求得的無因次應力強度因子代入應變能密度理論,討論當改變材料梯度方向以及非均質材料參數時對無因次化應變能密度因子之影響,並觀察無因次化應變能密度曲線,找出應變能密度因子極小值所對應的角度,即為所預測之裂縫可能開裂角度,並與利用最大周向應力理論所預測之可能開裂角度其之間的差異做一比較。由於材料的破壞韌性在非均質材料中仍是未知,因此裂縫是否真的會沿預測的角度裂出仍需要更多的實驗結果來輔助驗證。
In this research, the strain energy density theory is employed to predict the extension direction of a central crack embedded in a functionally graded material. The variation of material property, which vary along arbitrary direction, is assumed in an exponential form and the Poisson ratio is kept as a constant. Following the previous study of Konda and Erdogan (1994), the formulations will be derived from the beginning. The derived singular integral equations are solved numerically. The normalized stress intensity factors of two simple loading cases are compared and checked correctly to validate the formulations and numerical computations. The direction of minimum strain energy density factor Smin, which is used to indicate the crack extension direction, for different loading directions are obtained and compared with the results predicted by the maximum circumferential stress theory. The factors that affect the magnitude of Smin and direction include the non-homogeneous material parameter, crack length, and the variation direction of material properties. Since the fracture toughness of a non-homogeneous material is still unknown, the possibility of using the strain energy density theory for predicting the direction of crack extension needs more experimental evidence.
[1] 王寶林, 韓杰才, 張幸紅, 非均質材料力學,科學出版社, 北京市, 2003.
[2] Erdogan, F. and Delale, F., The Crack Problem for a Nonhomogeneous Plane. Transaction of the ASME, Journal of Applied Mechanics 50, 609-614, 1983.
[3] Ozturk, M. and Erdogan, F., The Axisymmetrical Crack Problem in a Nonhomogeneous Medium. Transaction of the ASME, Journal of Applied Mechanics 60, 406-413, 1993.
[4] Konda, N. and Erdogan, F., The Mixed-Mode Crack Problem in a Nonhomogeneous Elastic Medium. Engineering Fracture Mechanics 47, 533-545, 1994.
[5] Erdogan, F., Fracture-Mechanics of Functionally Graded Materials. Composites Engineering 5, 753-770, 1995.
[6] Muskhelishvili, N. I., Singular Integral Equations. Noordhoff International Publishng, Groningen, The Netherlands, 1953.
[7] Sih, G. C., Mechanics of Fracture Initiation and Propagation. Kluwer Academic Publishing, Dordrecht, Boston, Chapter 1, 1991.
[8] Erdogan, F., Gupta, G. D. and Cook, T. S., Numerical Solution of Singular Integral Equations in Mechanics of Fracture 1: Method of Analysis and Solution of Crack Problem, edited by G. C. Sih, Chapter 7, Noordhoff International Publishing, Leyden, The Netherlands, 1973.
[9] 徐穎成, 含單一嵌入式裂縫之功能梯度壓電半無窮平板問題面內破壞分析, 國立成功大學, 2009.
[10] Erdogan, F. and Gupta, G. D., Numerical Solution of Singular Integral Equations. Quarterly of Applied Mathematics 29, 525-534, 1972.
[11] Rivlin, T. J., The Chebyshev Polynomials. Wiley, New York, 1974.