簡易檢索 / 詳目顯示

研究生: 謝孟築
Hsieh, Meng-Chu
論文名稱: 中央廚房設備規畫設計以中小學廚房為例
Central Kitchen Equipment Planning in Elementary School Kitchen
指導教授: 潘振宇
Pan, Chen-Yu
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 111
中文關鍵詞: 機械換氣廚房規劃空調換氣設備換氣量
外文關鍵詞: Mechanical Ventilation, Kitchen planning, HVAC, Air exchange rate
相關次數: 點閱:57下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中央廚房作為集規模化與高效性的餐食製造場所,為去除烹調過程中產生的各種對人體具有危害的汙染物和空間內烹調設備產生的熱負荷與水氣,需要較大的換氣量。中央廚房的換氣系統設計與空調設備選用應兼顧換氣效率、人員舒適度及能源節約性,實屬複雜的高功能建築空間。本研究選擇台南市兩所國小中央廚房(代號:R廚房與Y廚房)做為研究對象,於建築改建工程前後分別進行室內溫溼度實測作為數據參考,比較廚房設計教學理論與實務間的差異。
    研究結果顯示,在建築計畫層面上,兩間廚房原來室內空間皆無劃分作業分區且烹調產生的油煙污染與噪音問題未處理,改建後已按HACCP原則進行分區,並設置油煙廢氣與噪音污染防制設施。在環控設備系統的規劃上,兩間廚房皆由混和換氣模式改為全機械換氣模式,實測結果R廚房排氣量與進氣量皆未達設計需求值,空調容量僅有設計值的38%;Y廚房排氣量達標而進氣量僅設計值的41%,空調容量符合設計需求;改建後R廚房較改建前室內溫濕度皆上升,Y廚房則是溫度下降、濕度上升。
    造成改建成果不如預期的原因在於統籌分配與工程管理層面,除了工程費用分配不均,以及僅有同等規模平均工期一半的設計施工期程外,還有長期以來忽視的環控系統設備設計實務教學。

    Central kitchen requires a substantial ventilation capacity to eliminate harmful particle compounds, and the heat and moisture generated during the cooking process. This study selected two primary school central kitchens in Tainan City (coded as R Kitchen and Y Kitchen) as research subjects. Temperature and humidity measurements were conducted before and after building renovation, comparing the differences between kitchen design theories and practical implementations.
    The research results reveal that, both kitchens originally lacked division of operational zones, oil fumes and noise pollution were left unaddressed. After renovation, both kitchens were reorganized based on HACCP principles, installing facilities to control oil fume and noise pollution. In terms of ventilation design, both kitchens transitioned from a mixed ventilation to fully mechanical ventilation. However, R Kitchen's exhaust and intake volumes did not meet the design requirements, with the air conditioning capacity reaching only 38% of the design value. Y Kitchen met the exhaust volume standards, but the intake volume was only 41% of the design value, and the air conditioning capacity met the design requirements. After renovation, R experienced an increase in temperature and humidity compared to pre-renovation, while Y showed a decrease in temperature and an increase in humidity.
    The reasons for the renovation outcomes falling short of expectations lie in coordination, project management issues, uneven distribution of construction costs, and compressed construction schedules. Another significant factor is the long-standing neglect of practical education on environmental control system equipment design.

    第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目的 3 1.4研究範圍與流程 4 1.5研究對象 5 第二章 文獻規範 6 2.1文獻回顧 6 2.1.1廚房室內空氣汙染源及影響 6 2.1.2廚房室內環境熱舒適性 7 2.1.3室內空間通風換氣模式 8 2.1.4廚房的通風換氣模式 9 2.2相關規範 11 2.2.1人體熱舒適性規範 11 2.2.2空間換氣率規範 13 2.2.3食物製備場所流程規範 16 第三章 規劃原則 17 3.1中央廚房規劃流程與方法 17 3.1.1設計流程 17 3.1.2初步規劃 18 3.1.3概念構想草圖策畫 20 3.1.4基本設計書圖製作 22 3.1.5實施設計書圖製作 23 3.2中央廚房規劃所需基本資料 24 3.2.1中央廚房功能與分區 24 3.2.2廚房動線規劃 25 3.3中央廚房空調換氣設備 27 3.3.1排氣設備系統 28 3.3.2補氣設備系統 29 3.3.3空調設備系統 30 3.3.4兩間中小學中央廚房空調換氣設備系統 31 第四章 研究方法 33 4.1現場實測月分與時段選定 33 4.1.1實測季節月份 33 4.1.2實測時段 34 4.2現場實測方法設計 35 4.2.1選用儀器 35 4.2.2儀器架設位置 36 4.3實測結果分析 38 4.3.1 R國小中央廚房改善前後結果分析 38 4.3.2 Y國小中央廚房改善前後結果分析 43 4.3.3兩間學校廚房改善結果分析比較 48 4.3.4設計規劃與工程期程影響 52 4.4計算流體力學軟體模擬與改善對策 53 4.4.1計算流體力學模擬 53 4.4.2模擬結果與改善對策 55 第五章 結論 58 5.1建築計畫層面 58 5.2環控設備系統層面 59 5.3統籌分配與工程管理層面 60 參考文獻 63 中文文獻 63 日文文獻 63 英文文獻 63 附錄 69

    台南市政府教育局. (2020). 臺南市高級中等以下學校辦理學校午餐及校園食品工作手冊.
    丘志威等. (2013). 中央廚房式餐飲製造業建立HACCP系統參考手冊. 衛生福利部食品藥物管理署.
    黃榮芳. (2023). 工業通風—局部排氣裝置設置參考手冊. 勞動部職業安全衛生署.
    行政院公共工程委員會. (2020). 建築工程.公共建設工程經費估算編列手冊 (第十八章).
    建築技術規則建築設計施工編, (2021).
    行政院環保署. (2019). 餐飲油煙防制設備設置組合指引手冊.
    餐飲業空氣污染防制設施管理辦法, (2021).
    王順志. (2020). 餐飲業通風型態分析與改善對策研究 A study on planning of ventilation facilities for commercial kitchens in Taiwan. 勞動部勞研所.
    行政院公共工程委員會. (2015). 公共工程訂定工期參考原則.
    廚房設計圖集委員會. (1992). 廚房設備設計事例集. 關東廚房機器協同組合.
    ASHRAE. (2001). Nonresidential Cooling and Heating Load Calculation Procedures. ASHRAE.
    ASHRAE. (2015). 2015 ASHRAE Handbook -- HVAC Applications (I-P) (Har/Cdr ed.). ASHRAE.
    ASHRAE. (2017). ASHRAE 55. In Thermal Environmental Conditions for Human Occupancy. United States: ASHRAE.
    Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 71, 260-294.
    Bruce, N., Perez-Padilla, R., & Albalak, R. (2000). Indoor air pollution in developing countries: a major environmental and public health challenge. Bulletin of the World Health organization, 78(9), 1078-1092.
    Chen, Z., Xin, J., & Liu, P. (2020). Air quality and thermal comfort analysis of kitchen environment with CFD simulation and experimental calibration. Building and Environment, 172, 106691.
    Chiang, C. M., Chang, K. F., Lee, C. Y., & Chou, P. C. (2006). Modelling and monitoring natural ventilation for conventional kitchens in Taiwan with transoms replaced with porous screens [Article]. Indoor and Built Environment, 15(2), 173-178. https://doi.org/10.1177/1420326x06063872
    Chowdhury, Z., Le, L. T., Al Masud, A., Chang, K. C., Alauddin, M., Hossain, M., Zakaria, A., & Hopke, P. K. (2012). Quantification of indoor air pollution from using cookstoves and estimation of its health effects on adult women in northwest Bangladesh. Aerosol and Air Quality Research, 12(4), 463-475.
    Clark, J. A. (2009). Kitchen ventilation. ASHRAE Journal, 20-24.
    De Vecchi, R., Sorgato, M. J., Pacheco, M., Cândido, C., & Lamberts, R. (2015). ASHRAE 55 adaptive model application in hot and humid climates: the Brazilian case. Architectural Science Review, 58(1), 93-101. https://doi.org/10.1080/00038628.2014.981145
    Fujii, N., Kaihara, T., Uemura, M., Nonaka, T., & Shimmura, T. (2013). Facility layout planning of central kitchen in food service industry: Application to the real-scale problem. Advances in Production Management Systems. Sustainable Production and Service Supply Chains: IFIP WG 5.7 International Conference, APMS 2013, State College, PA, USA, September 9-12, 2013, Proceedings, Part II,
    Han, O., Li, A. G., & Kosonen, R. (2019). Hood performance and capture efficiency of kitchens: A review [Review]. Building and Environment, 161, 15, Article 106221. https://doi.org/10.1016/j.buildenv.2019.106221
    ISO. (2005). ISO 7730. In Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Switzerland: ISO.
    Jason Greenberg, P. E. a. F. K., P.E. (2020). Kitchen Design, Ventilation and Cx ASHRAE Illinois CTTC Mtg, Illinois, United States.
    Kosonen, R., Koskela, H., & Saarinen, P. (2006). Thermal plumes of kitchen appliances: Cooking mode [Article]. Energy and Buildings, 38(10), 1141-1148. https://doi.org/10.1016/j.enbuild.2006.01.003
    Li, A., & Kosonen, R. (2019). Design of Kitchen Ventilation. In A. Li & R. Kosonen (Eds.), Kitchen Pollutants Control and Ventilation: A Ventilation Guide to Asian & European Kitchen Environment (pp. 237-252). Springer Singapore. https://doi.org/10.1007/978-981-13-6496-9_6
    Li, A., & Kosonen, R. (2019). Kitchen Ventilation Requirements. In Kitchen Pollutants Control and Ventilation: A Ventilation Guide to Asian & European Kitchen Environment (pp. 33-59). Springer Singapore. https://doi.org/10.1007/978-981-13-6496-9_2
    Li, A. G., Kosonen, R., Li, A., & Kosonen, R. (2019). High-Performance Kitchen Ventilation. Springer-Verlag Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-6496-9_7
    Li, A. G., Kosonen, R., Li, A., & Kosonen, R. (2019). Case Study and Design of Kitchen Ventilation. Springer-Verlag Singapore Pte Ltd. https://doi.org/10.1007/978-978-13-6496-9_9
    Li, A. G., Zhao, Y. J., Jiang, D. H., & Hou, X. T. (2012). Measurement of temperature, relative humidity, concentration distribution and flow field in four typical Chinese commercial kitchens [Article]. Building and Environment, 56, 139-150. https://doi.org/10.1016/j.buildenv.2012.03.001
    Li, A. G., Zhao, Y. J., Wang, Z. H., & Gao, R. (2014). Capture and Containment Efficiency of the Exhaust Hood in a Typical Chinese Commercial Kitchen with Air Curtain Ventilation [Article]. International Journal of Ventilation, 13(3), 221-234. <Go to ISI>://WOS:000348585900002
    Pervez, S., Dubey, N., Watson, J. G., Chow, J., & Pervez, Y. (2012). Impact of different household fuel use on source apportionment results of house-indoor RPM in Central India. Aerosol and Air Quality Research, 12(1), 49-60.
    Rahmillah, F. I., Tumanggor, A. H. U., & Sari, A. D. (2017). The analysis of thermal comfort in kitchen. IOP Conference Series: Materials Science and Engineering,
    Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., & Rogge, W. F. (2006). Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environmental science & technology, 40(24), 7820-7827.
    Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 30(22), 3837-3855.
    Simone, A., Olesen, B. W., Stoops, J. L., & Watkins, A. W. (2013). Thermal comfort in commercial kitchens (RP-1469): Procedure and physical measurements (Part 1). HVAC&R Research, 19(8), 1001-1015. https://doi.org/10.1080/10789669.2013.840494
    Sun, L., & Wallace, L. A. (2021). Residential cooking and use of kitchen ventilation: The impact on exposure. Journal of the Air & Waste Management Association, 71(7), 830-843.
    Taleghani, M., Tenpierik, M., Kurvers, S., & van den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201-215. https://doi.org/https://doi.org/10.1016/j.rser.2013.05.050
    Willers, S. M., Brunekreef, B., Oldenwening, M., Smit, H. A., Kerkhof, M., & De Vries, H. (2006). Gas cooking, kitchen ventilation, and exposure to combustion products [Article]. Indoor Air, 16(1), 65-73. https://doi.org/10.1111/j.1600-0668.2005.00404.x
    Yi, K. W., Kim, Y. I., & Bae, G. N. (2016). Effect of air flow rates on concurrent supply and exhaust kitchen ventilation system [Article]. Indoor and Built Environment, 25(1), 180-190. https://doi.org/10.1177/1420326x14541558
    Yin, Y., Pei, J., & Liu, J. (2022). The effectiveness of kitchen ventilation for organic gaseous compound control in Chinese residential buildings. Building and Environment, 226, 109764.
    Zhao, W., Hopke, P. K., Norris, G., Williams, R., & Paatero, P. (2006). Source apportionment and analysis on ambient and personal exposure samples with a combined receptor model and an adaptive blank estimation strategy. Atmospheric Environment, 40(20), 3788-3801.
    Zhao, Y. J., Liu, L., Tao, P. F., Zhang, B., Huan, C., Zhang, X. A., & Wang, M. (2019). Review of Effluents and Health Effects of Cooking and the Performance of Kitchen Ventilation [Review]. Aerosol and Air Quality Research, 19(8), 1937-1959. https://doi.org/10.4209/aaqr.2019.04.0198
    Zheng, M., Hagler, G. S., Ke, L., Bergin, M. H., Wang, F., Louie, P. K., Salmon, L., Sin, D. W., Yu, J. Z., & Schauer, J. J. (2006). Composition and sources of carbonaceous aerosols at three contrasting sites in Hong Kong. Journal of Geophysical Research: Atmospheres, 111(D20).
    Zhou, Y., Zou, Y., Li, X., Chen, S., Zhao, Z., He, F., Zou, W., Luo, Q., Li, W., & Pan, Y. (2014). Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS medicine, 11(3), e1001621.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE