簡易檢索 / 詳目顯示

研究生: 蘇溢芳
Su, I-Fang
論文名稱: 在分散式與集中式系統上處理使用者偏好查詢之研究
Preference Query Processing Techniques in Distributed and Centralized Systems
指導教授: 李強
Lee, Chiang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 189
中文關鍵詞: 感應半徑相似搜尋天際線查詢組合式天際線前k筆組合式天際線感測環境
外文關鍵詞: Sensing range, similarity search, skyline, combinatorial skyline, top-k combinatorial skyline, sensor network
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來有越來越多的研究傾向於延伸資料庫系統的能力提供使用者偏好這一類的查詢。在我們的研究中,我們分別針對在集中式或分散式環境下提出使用者偏好查詢時所需要的數個有效率的演算法。在討論這些使用者偏好查詢前,由於我們研究中的數個使用者偏好皆是在分散式的感測環境中執行,而感測環境本身是一個電力受限且處理器能力有限的環境。因此,在本研究的一開始我們在不改變感測範圍的情況下透過動態的調整感應半徑,減少感測器電量的消耗以延長感測環境監測的壽命,如此一來才可提供使用者在感測環境中執行所提出的偏好查詢。明確的說,我們將在本論文中討論三個不同類型的使用者偏好查詢。第一類的使用者偏好查詢為相似搜尋,使用者可以透過這樣的搜尋找到最接近的答案,特別是當感測環境中找不到任何一個完全符合查詢的資料值。第二類則是天際線查詢,天際線查詢可以提供使用者針對不同的屬性給定其所偏好的資料值,例如屬性值較高,較低等不同的資料值。第三個則是前k筆組合式天際線查詢,這一類的查詢可以提供使用者從多筆資料中所產生的組合中找出前k個令使用者最感興趣的組合式天際線。我們分別提出了幾個有效率的方法來解決這三類的問題。所有的方法皆是漸進式並能夠在很短的時間內回答使用者的查詢。我們透過許多的實驗分析證明我們的方法不論是在集中式或分散式的環境中都能有效率的解決使用者偏好的查詢。

    Supporting user preferences has recently been a growing interest in extending the capability of database systems. In our work, we propose several efficient structures and algorithms for evaluating such user preference queries in centralized and distributed environments. Since some of the user preference queries are processed in distributed sensor networks which are usually with limited power sources and low computation capability, we first dynamically adjust its sensing radius in our work so that the global coverage of the whole detecting area remains unchanged, energy consumption is minimized, and the lifetime of the sensor network is extended. Specifically, we study the evaluation of three specific types of user preference queries. First, a similarity query allows the users to retrieve the similar data, even if there is no value which exactly matches the given value of the query in sensor networks. Second, a skyline query allows the users to specify whether they favor low, high or different values of the attributes in sensor networks. Third, a top-k combinatorial skyline query allows the users to evaluate the top-k interesting skyline combinations from various kind of combinations of the give tuples. We propose several approaches to efficiently evaluate these queries. All approaches are progressive and provide a fast initial response time. All the schemes are further analyzed empirically through extensive experimental studies and the results indicate that they are effective in supporting user preferences in both centralized and distributed database environments.

    Contents Abstract i Table of Contents v Table of Figures ix Table of Algorithms xiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . 1 1.2 Overview of the Dissertation . . . . . . . . . . . . 4 1.2.1 Radius Reconfiguration for Energy Conservation in Sensor networks 4 1.2.2 An Efficient Mechanism for Processing Similarity Search Queries in Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Efficient Skyline Query Processing in Wireless Sensor Networks . 5 1.2.4 On efficient processing of top-k combinatorial skyline queries . . . 5 1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 6 2 Radius Reconfiguration for Energy Conservation in Sensor networks 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The Environment and Assumptions . . . . . . . . . . . . . . . . . . . . . 11 2.3 Grid Shrinking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Model of Grid-based Sensor Networks . . . . . . . . . . . . . . . . 12 2.3.2 Finding theminimally allowed sensing radius . . . . . . . . . . . 14 2.4 Collaborative Expanding Algorithm . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Collaboration Area and the Collaboration Angle . . . . . . . . . . 18 2.4.2 Adjusting Sensing Radius . . . . . . . . . . . . . . . . . . . . . . 20 2.4.3 Validity of the CEA method . . . . . . . . . . . . . . . . . . . . . 23 2.4.4 Further Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Computation Costs of GSA and CEA . . . . . . . . . . . . . . . . 27 2.5.2 Sensing Costs of GSA and CEA . . . . . . . . . . . . . . . . . . . 29 2.5.3 Performance of the CEA algorithm . . . . . . . . . . . . . . . . . 30 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 An Efficient Mechanism for Processing Similarity Search Queries in Sensor Networks 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Design of a Data-Centric Storage System Supporting Similarity Search . 39 3.3.1 Mapping Hilbert Curve to Sensor Network . . . . . . . . . . . . . 40 3.3.2 Complexity of Building a Hilbert Curve . . . . . . . . . . . . . . . 43 3.3.3 Data InsertionMechanism . . . . . . . . . . . . . . . . . . . . . . 44 3.3.4 Similarity SearchMechanism. . . . . . . . . . . . . . . . . . . . . 46 3.3.5 Complexity of Similarity Search Algorithm . . . . . . . . . . . . . 50 3.3.6 Workload SharingMechanism . . . . . . . . . . . . . . . . . . . . 52 3.4 Extensions of our Similarity Search Algorithm . . . . . . . . . . . . . . . 54 3.4.1 Range Query Processing . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.2 Multiple Queries Processing . . . . . . . . . . . . . . . . . . . . . 55 3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5.1 PerformanceModel . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 Network size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5.3 Node density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5.4 Node distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5.5 Partition level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.6 Query rate and Data detection rate . . . . . . . . . . . . . . . . . 69 3.5.7 Node Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.8 Workload of Indexing nodes and Storage nodes . . . . . . . . . . 71 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 Efficient Skyline Query Processing in Wireless Sensor Networks 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Skyline Query Processing in Centralized Environments . . . . . . 80 4.2.2 Skyline Query Processing in Distributed Environments . . . . . . 81 4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.1 Assumptions and Parameter Definitions . . . . . . . . . . . . . . 87 4.3.2 Clustering Architecture . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Data InsertionMechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Determining a Cluster . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.2 Routing a Tuple to a Cluster . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Determining a Storage Node . . . . . . . . . . . . . . . . . . . . . 94 4.4.4 Updating Summary Table . . . . . . . . . . . . . . . . . . . . . . 94 4.5 Query ProcessingMechanism . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.1 A Naive Skyline Query ProcessingMethod . . . . . . . . . . . . . 95 4.5.2 Features and an Overview of SkySensor . . . . . . . . . . . . . . . 95 4.5.3 The QueryMessage Format . . . . . . . . . . . . . . . . . . . . . 97 4.5.4 The pruning phase . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5.5 Data Gathering Phase . . . . . . . . . . . . . . . . . . . . . . . . 105 4.6 Solving Additional Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.6.1 The load balance issue . . . . . . . . . . . . . . . . . . . . . . . . 106 4.6.2 The robustness issue . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.7.1 PerformanceModel . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.7.2 Data Insertion Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.7.3 Query Processing Cost . . . . . . . . . . . . . . . . . . . . . . . . 111 4.7.4 Total Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 On efficient processing of top-k combinatorial skyline queries 119 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.3 Top-k Combinatorial Skyline Query Processing . . . . . . . . . . . . . . . 128 5.3.1 The Brute-ForceMethod . . . . . . . . . . . . . . . . . . . . . . . 129 5.3.2 Restricted Construction Algorithm . . . . . . . . . . . . . . . . . 134 5.3.3 Restricted Construction Algorithm with Decomposition of Combinatorial Skyline (RCA-DCS) . . . . . . . . . . . . . . . . . . . . 143 5.3.4 The Improved RCA-DCS (iRCA-DCS) algorithm . . . . . . . . . 151 5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.4.1 Scalability with respect to data size . . . . . . . . . . . . . . . . . 160 5.4.2 Scalability with respect to dimensionality (d) . . . . . . . . . . . . 161 5.4.3 Scalability with respect to cardinality (c) . . . . . . . . . . . . . . 162 5.4.4 Scalability with respect to Top-k size (k) . . . . . . . . . . . . . . 163 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6 Conclusions 173 Biography 188 List of Figures 2.1 Distribution of sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Topology of transmission range in a sensor network. . . . . . . . . . . . . 10 2.3 Coverage of a sensor network. . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Grid-based sensor network. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Cache table of S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 A temporary result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7 The unmonitored hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.8 The remedy to the unmonitored hole problem. . . . . . . . . . . . . . . . 16 2.9 The collaboration area and the collaboration angle of sensor Si and Sn. . 18 2.10 The collaboration angle of sensor Si and its neighbor Sn. . . . . . . . . . 20 2.11 Integration of angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.12 Finding the integrated collaboration angle of sensor S1. . . . . . . . . . . 23 2.13 Point p is at least covered by its nearest sensor Si before and after executing the CEA method. .25 2.14 The fully covered sensor node. . . . . . . . . . . . . . . . . . . . . . . . . 26 2.15 The computation cost of the GSA with varying grid length and node density. 28 2.16 Sensing costs of themethods. . . . . . . . . . . . . . . . . . . . . . . . . 29 2.17 Collaboration nodes and active nodes in executing CEA. . . . . . . . . . 31 2.18 The distribution of adjusted sensing radius. . . . . . . . . . . . . . . . . 32 3.1 Example of structured replication. . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Hilbert curve for level 1 and level 2. . . . . . . . . . . . . . . . . . . . . . 41 3.3 Mapping Hilbert curve onto a sensor network. . . . . . . . . . . . . . . . 42 3.4 The greedy perimeter stateless routing mechanism. . . . . . . . . . . . . 45 3.5 Hilbert curve for level 1 and level 2. . . . . . . . . . . . . . . . . . . . . . 45 3.6 Three operations of the probing phase. . . . . . . . . . . . . . . . . . . . 50 3.7 Three cases of themultiple point queries processing. . . . . . . . . . . . . 56 3.8 Four cases of themultiple range queries processing. . . . . . . . . . . . . 60 3.9 Total cost of SSA and SR-GHT in a small network. . . . . . . . . . . . . 63 3.10 Total cost of SSA and SR-GHT in a large network. . . . . . . . . . . . . 64 3.11 The average cost of SSA and SR-GHT under different node density. . . . 66 3.12 Number of message exchanges under different node density. . . . . . . . . 66 3.13 A skewed distribution of sensors. . . . . . . . . . . . . . . . . . . . . . . 67 3.14 The cost of SSA and SR-GHT in a skewed distribution of sensors. . . . . 67 3.15 Comparison on the number of levels in a large sensor network. . . . . . . 68 3.16 Performance comparison under different query and data detection ratio. . 70 3.17 Performance comparison considering node failure. . . . . . . . . . . . . . 72 3.18 Performance comparison considering node failure in a large sensor network. 73 3.19 Performance comparison considering hot spot by varying data detection rate. . 75 3.20 Performance comparison considering hot spot by varying query rate. . . . 76 4.1 A threshold selection inMINMAX. . . . . . . . . . . . . . . . . . . . . . 82 4.2 Three datasets of different data distributions. . . . . . . . . . . . . . . . 84 4.3 An example of SWSMA-TF in the correlated dataset. . . . . . . . . . . . 84 4.4 Mapping the detected data to a grid of SWSMA-GF. . . . . . . . . . . . 85 4.5 A cluster architecture example. . . . . . . . . . . . . . . . . . . . . . . . 88 4.6 Si,1 selects the next storage node (i.e., Si,2) in the clockwise direction. . . 90 4.7 A bad selection of a cluster center. . . . . . . . . . . . . . . . . . . . . . 91 4.8 Forwarding a query to storage nodes. . . . . . . . . . . . . . . . . . . . . 97 4.9 An example of determining a pruning node threshold and a pruning tuple threshold. .. . . . . . 101 4.10 The dominating regions of t1 and t2. . . . . . . . . . . . . . . . . . . . . 102 4.11 Examples of rotating storage nodes. . . . . . . . . . . . . . . . . . . . . . 107 4.12 Data insertion cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.13 Query processing costs under different network size. . . . . . . . . . . . . 115 4.14 Query processing cost under different data dimensionality. . . . . . . . . 116 4.15 Total cost under different network size. . . . . . . . . . . . . . . . . . . . 117 4.16 Total cost under different data dimensionality. . . . . . . . . . . . . . . . 118 5.1 An example of a skyline for single investment. . . . . . . . . . . . . . . . 120 5.2 An example of an investment portfolio. . . . . . . . . . . . . . . . . . . . 121 5.3 Parameters and their meanings. . . . . . . . . . . . . . . . . . . . . . . . 128 5.4 CT(5 − 1, 2) ∪ (CT(5 − 1, 2 − 1) ⊕ t5) = CT(5,2). . . . . . . . . . . . . . 131 5.5 The solution table of CT(5,3). . . . . . . . . . . . . . . . . . . . . . . . . 132 5.6 The illustration for obtaining CT(2, 1) and CT(2,2). . . . . . . . . . . . 133 5.7 The final solution table T . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.8 An illustrating example of using MPD in RCA. . . . . . . . . . . . . . . 137 5.9 SKY (SKY (CT(5−1, 2))∪SKY (CT(5−1, 2−1)⊕t5)) = SKY (CT(5, 2)).146 5.10 An example illustrating RCA-DCS in processing a top-3 combinatorial skyline query. . . 149 5.11 The subproblems that are pruned. . . . . . . . . . . . . . . . . . . . . . . 153 5.12 The query processing time w.r.t. database size. . . . . . . . . . . . . . . 165 5.13 Number of generated combinations w.r.t. database size. . . . . . . . . . . 166 5.14 Scalability w.r.t. dimensionality. . . . . . . . . . . . . . . . . . . . . . . . 167 5.15 Number of generated combinations w.r.t. dimensionality. . . . . . . . . . 168 5.16 Scalability w.r.t. cardinality. . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.17 Number of generated combinations w.r.t. cardinality. . . . . . . . . . . . 170 5.18 The query processing time w.r.t. k value. . . . . . . . . . . . . . . . . . . 171 5.19 Number of generated combinations w.r.t. k value. . . . . . . . . . . . . . 172 List of Algorithms 2.1 Grid Shrinking Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Adjust the sensing radius of CEA. . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Further Removal of CEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Mapping Hilbert curve to sensor network. . . . . . . . . . . . . . . . . . . 43 3.2 Data insertionmechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 Similarity search mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Multiple point query processing. . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Multiple range query processing. . . . . . . . . . . . . . . . . . . . . . . . 60 5.1 The pseudo code of the Brute-Force algorithm. . . . . . . . . . . . . . . . 134 5.2 The pseudo code of the construct subproblem algorithm. . . . . . . . . . . 134 5.3 The pseudo code of the Restricted Construction Algorithm(RCA). . . . . 142 5.4 The pseudo code of the extract the combinatorial skyline. . . . . . . . . . 143 5.5 The pseudo code of the find top k combinatorial skyline. . . . . . . . . . . 143 5.6 The pseudo code of the construct subproblem algorithm. . . . . . . . . . . 151 5.7 The pseudo code of the iRCA-DCS algorithm . . . . . . . . . . . . . . . . 157 5.8 The pseudo code of the calculate dominator algorithm. . . . . . . . . . . . 158

    [1] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity search
    for web services,” in Proceedings of 30th VLDB Conference, pp. 372–383, Toroto,
    Canada, September 2004.
    [2] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neighbor classification,”
    in Proceedings of the First International Conference on Knowledge Discovery
    & Data Mining, pp. 142–149, Montreal, Canada, August 1995.
    [3] B. I., K. S.R., and P. S., “Similarity searching in peer-to-peer databases,” in
    Proceedings of 25th International Conference on Distributed Computing Systems
    (ICDCS05), pp. 329–338, Columbus, Ohio, USA, June 2005.
    [4] P. Kalnis,W. S. Ng, B. C. Ooi, and K.-L. Tan, “Similarity queries in peer-to-peer
    networks,” Information Systems Journal, vol. 31, no. 1, pp. 57–72, March 2006.
    [5] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in Proceedings
    of the 17th International Conference on Data Engineering, pp. 421–430. IEEE
    Computer Society, April 2001.
    [6] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi, “Skyline queries against mobile
    lightweight devices in manets,” in Proceedings of the 22nd International Conference
    on Data Engineering (ICDE). IEEE Computer Society, April 2006.
    [7] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An online
    algorithm for skyline queries,” in Proceedings of 28th International Conference on
    Very Large Data Bases, pp. 275–286, August 2002.
    [8] L. Jongwuk, Y. Gae-won, and H. Seung-won, “Personalized top-k skyline queries
    in high-dimensional space,” Information Systems, vol. 34, no. 1, pp. 45–61, March
    2009.
    [9] J. Lee, G. won You, I. Sohn, S. won Hwang, K. Ko, and Z. Lee, “Supporting personalized
    top-k skyline queries using partial compressed skycube,” in Proceedings
    of the 9th ACM International Workshop on Web Information and Data Management
    (WIDM 2007), pp. 65–72. ACM, November 2007.
    [10] K. Zhao, Y. Tao, and S. Zhou, “Efficient top-k processing in large-scaled distributed
    environments,” Data and Knowledge Engineering, vol. 63, no. 2, pp. 315–
    335, November 2007.
    [11] F. K. Reilly and K. C. Brown, Investment Analysis & Portfolio Management, 7e.
    Thomson, 2003.
    [12] J. Griffiths, “An algorithm for displaying a class of space-filling curves,” Software-
    Practice and Experience, vol. 16, no. 5, pp. 403–411, 1986.
    [13] N. Wirth, Algorithms and Data Structures. Englewood Cliff, NJ: Prentice-Hall
    Inc., 1986.
    [14] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu,
    “Data-centric storage in sensornets with ght, a geographic hash table,” Mobile
    Networks and Applications, vol. 8, no. 4, pp. 427–442, August 2003.
    [15] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan,
    “Physical layer driven protocol and algorithm design for energy-efficient wireless
    sensor networks,” in Proceedings of the 7th Annual International conference on
    Mobile Computing and Networking, ACM, pp. 272–286, Rome, Italy, July 2001.
    [16] M. Esseghir, N. Bouabdallah, and G. Pujolle, “Sensor placement for maximizing
    wireless sensor network lifetime,” in Proceedings of IEEE Vehicular Technology,
    pp. 2347–2351, Dallas, USA, September 2005.
    [17] B. C˘arbunar, A. Grama, J. Vitek, and O. C˘arbunar, “Redundancy and coverage
    detection in sensor networks,” ACM Transactions on Sensor Networks, vol. 2,
    no. 1, pp. 94–128, February 2006.
    [18] Z. Zhou, S. Das, and H. Gupta, “Connected k-coverage problem in sensor networks,”
    in Proceedings of the 13rd international conference on Computer Communication
    and Networks, ICCCN, pp. 373–378, Chicago, IL, USA, October 2004.
    [19] M. Lu, J. Wu, M. Cardei, and M. Li, “Energy-efficient connected coverage of discrete
    targets in wireless sensor networks,” in International Conference on Computer
    Network and Mobile Computing (ICCNMC 2005), pp. 43–52, Zhangjiajie,
    China, August 2005.
    [20] S. Pattem, S. Poduri, and B. Krishnamachari, “Energy-quality tradeoffs for target
    tracking in wireless sensor networks,” in International Workshop on Information
    Processing in Sensor Networks, IPSN, pp. 32–46, Palo Alto, CA, USA, April 2003.
    [21] J. Wu and S. Yang, “Coverage issue in sensor networks with adjustable ranges,”
    in Proceedings of International Workshop on Mobile and Wireless Networking
    (MWN) (in conjunction with ICPP), pp. 61–68, Montreal, Quebec, Canada, August
    2004.
    [22] T. Yan, T. He, and J. A. Stankovic, “Differentiated surveillance for sensor networks,”
    in Proceedings of the first international conference on Embedded networked
    sensor systems, pp. 51–62, Los Angeles, California, USA, November 2003.
    [23] O. Younis, S. Ramasubramanian, and M. Krunz, “Location-unaware sensing range
    assignment in sensor networks,” in Proceedings of IFIP Networking’07, pp. 120–
    131, Atlanta, GA, USA, May 2007.
    [24] “Photoelectric sensors,” http://www.schneiderelectric.ca/www/en/products
    /sensors2000/html/osiris.htm.
    [25] “Rps-400-6 close range sensor,” http://www.migatron.com/products
    /rps4006/rps4006.htm.
    [26] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage
    and connectivity configuration in wireless sensor networks,” in Proceeding of the
    First ACM Conference on Embedded Networked Sensor Systems, SenSys’03, pp.
    28–39, Los Angeles, CA, USA, November 2003.
    [27] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed topology control
    for power efficient operation in multihop wireless ad hoc networks,” in Proceeding
    of IEEE INFOCOM, pp. 1388–1397, Anchorage, Alaska, USA, April 2001.
    [28] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity in large
    sensor networks,” International Journal of Wireless Ad Hoc and Sensor Networks,
    vol. 5, no. 4, pp. 565–572, September 2005.
    [29] “Us naval observatory (usno) gps operation,” http://tycho.usno.navy.mil
    /gps.html.
    [30] D. Tian and N. D. Georganas, “Connectivity maintenance and coverage preservation
    in wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 6, pp. 774–761,
    November 2005.
    [31] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “Range-free
    localization schemes in largescale sensor networks,” in Proceedings of the Annual
    International Conference on Mobile Computing and Networking, MOBICOM03,
    pp. 81–95, San Diego, CA, USA, September 2003.
    [32] R. Zheng, G. He, I. Gupta, and L. Sha, “A framework of time indexing in sensor
    networks,” ACM Transaction on Sensor Networks, vol. 1, no. 1, pp. 101–133,
    August 2005.
    [33] “Crossbow,” http://www.xbow.com/Products/Product pdf files/Wireless pdf
    /MEPSYS Datasheet.pdf.
    [34] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluation of probabilistic
    queries over imprecise data in constantly-evolving environments,” Information
    Systems, vol. 32, no. 1, pp. 104–130, March 2007.
    [35] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “Range-free
    localization schemes in large scale sensor networks,” in Proceedings of the 9th Annual
    International Conference on Mobile Computing and Networking (MobiCom),
    pp. 81–95, September 2003.
    [36] J. Jeong, S. Sharafkandi, and D. Du, “Energy-aware scheduling with quality of
    surveillance guarantee in wireless sensor networks,” in Proceedings of the Workshop
    on Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks
    (DIWANS), pp. 55–64, September 2006.
    [37] R. Q. and L. Q., “Energy and quality aware query processing in wireless sensor
    database systems,” Information Sciences, vol. 177, no. 10, pp. 2188–2205, May
    2007.
    [38] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “Infrastructure tradeoffs for
    sensor networks,” in Proceeding of Wireless Sensor Networks and Applications
    (WSNA’02), pp. 19–58, September 2002.
    [39] J. Anderson and L. Hong, “Sensor resource management driven by threat projection
    and priorities,” Information Sciences, vol. 178, no. 8, pp. 2007–2021, April
    2008.
    [40] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja, “Sensor
    deployment strategy for target detection,” in Proceedings of the 1st ACM international
    workshop on Wireless sensor networks and applications (WSNA’02), pp.
    42–48, September 2002.
    [41] Z. Feng and L. Guibas, Wireless Sensor Network: An Information Processing
    Approach. Morgan Kaufmann, 2004.
    [42] H. Wang, D. Estrin, and L. Girod, “Preprocessing in a tiered sensor network for
    habitat monitoring,” EURASIP JASP special issue of sensor networks, vol. 2003,
    no. 4, pp. 392–401, March 2003.
    [43] S. Cost and S. Salzberg, “A weighted nearest neighbor algorithm for learning with
    symbolic features,” Machine Learning, vol. 10, pp. 57–78, 1993.
    [44] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
    J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and
    video content: the qbic system,” IEEE Computer, vol. 28, no. 9, pp. 23–32, 1995.
    [45] X. Wan, “A novel document similarity measure based on earth mover’s distance,”
    Information Sciences, vol. 177, no. 18, pp. 3718–3730, September 2007.
    [46] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker, “Difs:
    a distributed index for features in sensor networks,” in Proceedings of the First
    IEEE International Workshop on Sensor Network Protocols and Applications, pp.
    163–173, Anchorage, Alaska, May 11 2003.
    [47] X. Li, Y. J. Kim, R. Govindan, and W. Hong, “Multi-dimensional range queries in
    sensor networks,” in Proceedings of the 1st international conference on Embedded
    networked sensor systems, pp. 63–75, Los Angels, CA, November 2003.
    [48] P. Xia, P. K. Chrysanthis, and A. Labrinidis, “Similarity-aware query processing
    in sensor networks,” in Proceedings of the 14th International Workshop on Parallel
    and Distributed Real-Time Systems, pp. 1–8, April 2006.
    [49] I.-F. Su, Y.-C. Chung, and C. Lee, “Finding similar answers in data-centric sensor
    networks,” in Proceedings of the International Conference on Sensor Networks,
    Ubiquitous, and Trustworthy Computing (SUTC’08), pp. 217–224, June 2008.
    [50] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier, “Space filling curves
    and their use in geometric data structure,” Theoretical Computer Science, vol.
    181, pp. 3–15, 1997.
    [51] D. Hilbert, “Uber die stetige abbildung einer linie auf ein flachenstuck,” Mathematische
    Annalen, vol. 38, pp. 459–460, 1891.
    [52] H. V. Jagadish, “Linear clustering of objects with multiple attributes,” in Proceedings
    of the 1990 ACM SIGMOD International Conference on Management of
    Data, pp. 332–342, Atlantic City, NJ, May 1990.
    [53] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz, “Analysis of the clustering
    properties of the hilbert space-filling curve,” IEEE Transactions on Knowledge
    and Data Engineering, vol. 13, no. 1, pp. 124–141, 2001.
    [54] L. Meng, C. Huang, C. Zhao, and Z. Lin, “An improved hilbert curve for parallel
    spatial data partitioning,” Geo-spatial Information Science, vol. 10, no. 4, pp.
    282–286, December 2007.
    [55] B. Karp and H. T. Kung, “Gpsr: Greedy perimeter stateless routing for wireless
    networks,” in Proceedings of the Sixth Annual ACM/IEEE International Conference
    on Mobile Computing and Networking (Mobicom 2000), pp. 243–254, August
    2000.
    [56] M. Aly, K. Pruhs, and P. K. Chrysanthis, “Kddcs: a load-balanced in-network
    data-centric storage scheme for sensor networks,” in Proceedings of the Conference
    on Information and Knowledge Management (CIKM’06), pp. 317–326, November
    2006.
    [57] P. Kulkarni, P. Shenoy, and D. Ganesan, “Approximate initialization of camera
    sensor networks,” in Proceedings of the Wireless Sensor Networks, 4th European
    Conference, EWSN 2007, pp. 67–82, January 2007.
    [58] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest neighbor
    queries in spatial databases,” ACM Transactions on Database Systems, vol. 30,
    no. 2, pp. 529–576, June 2005.
    [59] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for monitoring wireless
    sensor networks,” in Proceedings of the 1st IEEE International Workshop on
    Sensor Network Protocols and Applications (SNPA), pp. 139 –148, May 2003.
    [60] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu, “Efficient skyline query processing
    on peer-to-peer networks,” in Proceedings of the 23rd IEEE International
    Conference on Data Engineering (ICDE), pp. 1126–1135, April 2007.
    [61] K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee, “Approaching the skyline in z
    order,” in Proceedings of the 33rd International Conference on Very Large Data
    Bases (VLDB), pp. 279–290, September 2007.
    [62] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm
    for skyline queries,” in Proceedings of the 2003 ACM Special Interest Group on
    Management Of Data (SIGMOD) international conference, pp. 467–478. ACM
    Press, June 2003.
    [63] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline computation,”
    in Proceedings of the 27th International Conference on Very Large Databases
    (VLDB), pp. 301–310, Roma, Italy, September 2001.
    [64] Y. Yuan, X. Lin, Q. Liu,W.Wang, J. X. Yu, and Q. Zhang, “Efficient computation
    of the skyline cube,” in Proceedings of the 31st International Conference on Very
    Large Data Bases (VLDB), pp. 241–252, August 2005.
    [65] H. Chen, S. Zhou, and J. Guan, “Towards energy-efficient skyline monitoring
    in wireless sensor networks,” in Proceedings of the 4th European conference on
    Wireless Sensor Networks (EWSN 2007), pp. 101–116, January 2007.
    [66] Y. Kwon, J.-H. Choi, Y. D. Chung, and S. Lee, “In-network processing for skyline
    queries in sensor networks,” Proceedings of the Institute of Electronics, Information
    and Communication Engineers (IEICE) Transactions, vol. 90-B, no. 12, pp. 3452–
    3459, 2007.
    [67] J. Xin, G. Wang, L. Chen, X. Zhang, and Z. Wang, “Continuously maintaining
    sliding window skylines in a sensor network,” in Proceedings of the 12th International
    Conference on Database Systems for Advanced Applications (DASFAA), pp.
    509–521, April 2007.
    [68] D. Rivera, I. Rudomin, and M. Diaz, “Smart garden: Plant mail and chat environments,”
    in Proceedings of the 4th International Symposium, SG 2004, pp. 135–139.
    Springer, May 2004.
    [69] M. Arattano and L. Marchi, “Systems and sensors for debris-flow monitoring and
    warning,” in Proceedings of Sensors, pp. 2436–2452, 2008.
    [70] M. Berti, R. Genevois, R. LaHusen, A. Simoni, and P. R. Tecca, “Debris flow
    monitoring in the acquabona watershed on the dolomites,” Phys. Chem. Earth
    (B), vol. 25, no. 9, pp. 707–715, 2000.
    [71] A. Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat
    monitoring: Application driver for wireless communications technology,” in In
    ACM SIGCOMM Workshop on Data Communications, pp. 20 – 41. ACM, April
    2001.
    [72] D. Ganesan, S. Ratnasamy, H.Wang, and D. Estrin, “Coping with irregular spatiotemporal
    sampling in sensor networks,” ACM SIGCOMM Computer Communication,
    vol. 34, no. 1, pp. 125–130, January 2007.
    [73] W.-T. Balke, U. Guntzer, and J. X. Zheng, “Efficient distributed skylining for
    web information systems,” in Proceedings of the 9th International Conference on
    Extending Database Technology (EDBT 2004), pp. 256–273, March 2004.
    [74] E. Lo, K. Y. Yip, K.-I. Lin, and D. W. Cheung, “Progressive skylining over webaccessible
    databases,” Data & Knowledge Engineering archive, vol. 57, no. 2, pp.
    122–147, May 2006.
    BIBLIOGRAPHY 185
    [75] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou, “Parallel distributed processing
    of constrained skyline queries by filtering,” in Proceedings of the 24rd IEEE
    International Conference on Data Engineering (ICDE), April 2008.
    [76] H. Li, Q. Tan, and W.-C. Lee, “Efficient progressive processing of skyline queries
    in peer-to-peer systems,” in Proceedings of the 1st International Conference on
    Scalable Information Systems (INFOSCALE). ACM Press, May 2006.
    [77] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis, “Skypeer: Efficient
    subspace skyline computation over distributed data,” in Proceedings of the 23rd
    IEEE International Conference on Data Engineering (ICDE), pp. 416–425, April
    2007.
    [78] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in
    Proceedings of the 19th International Conference on Data Engineering (ICDE),
    pp. 717–719, March 2003.
    [79] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector computation in large data
    sets,” in Proceedings of the 31st International Conference on Very Large Data
    Bases, pp. 229–240, Trondheim, Norway, August 2005.
    [80] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation in
    database systems,” ACM Transactions on Database Systems, vol. 30, no. 1, pp.
    41–82, March 2005.
    [81] S. Chaudhuri, N. Dalvi, and R. Kaushik, “Robust cardinality and cost estimation
    for skyline operator,” in Proceedings of the 22nd International Conference on Data
    Engineering (ICDE), pp. 64–64, April 2006.
    [82] B. Silverman, Density Estimation for Statistics and Data Analysis. Proceedings
    of Chemical Rubber Company (CRC) Press, 1986.
    [83] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low cost outdoor localization
    for very small devices,” IEEE Personal Communications Magazine, vol. 7, no. 5,
    pp. 28–34, October 2000.
    [84] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,
    “Ght: A geographic hash table for datacentric storage,” in Proceedings of the
    First ACM International Workshop on Wireless Sensor Networks and Applications
    (WSNA), pp. 78–87. ACM Press, September 2002.
    [85] e. Abhishek Ghos, J. Grossklags, and J. Chuang, “Resilient data-centric storage
    in wireless ad-hoc sensor networks,” in Proceedings of the 4th International Conference
    on Mobile Data Management MDM 2003, pp. 45–62, 2003.
    [86] W. Zhang, G. Cao, and T. F. L. Porta, “Data dissemination with ring-based
    index for wireless sensor networks,” in Proceedings of the 11th IEEE International
    Conference on Network Protocols (ICNP), pp. 305–314, November 2003.
    [87] L. P. Cox, M. Castro, and A. I. T. Rowstron, “Pos: A practical order statistics
    service for wireless sensor networks,” in Proceedings of the 26th International
    Conference on Distributed Computing Systems (ICDCS), pp. 52–52, July 2006.
    [88] W. Jin, J. Han, and M. Ester, “Mining thick skylines over large databases,” in Proceedings
    of the 8th European Conference on Principles and Practice of Knowledge
    Discovery in Databases, pp. 255–266. Springer, September 2004.
    [89] L. V. S. Lakshmanan, J. Pei, and J. Han, “Quotient cube: How to summarize
    the semantics of a data cube,” in Proceedings of 28th International Conference on
    Very Large Data Bases, pp. 778–789. Morgan Kaufmann, August 2002.
    [90] C. Li, B. C. Ooi, A. K. H. Tung, and S.Wang, “Dada: a data cube for dominant
    relationship analysis,” in SIGMOD Conference, pp. 659–670, June 2006.
    [91] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, “On the average
    number of maxima in a set of vectors and applications,” JACM, vol. 25, no. 4, pp.
    536–543, 1978.
    [92] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most representative
    skyline operator,” in Proceedings of the IEEE 23rd International Conference
    on Data Engineering (ICDE’2007), pp. 86–95, April 2007.
    [93] J. G. Siegel, J. K. Shim, and S. Hartman, Schaum’s Quick Guide to Business
    Formulas: 201 Decision-Making Tools for Business, Finance, and Accounting Students.
    McGraw-Hill Professional, 1997.
    [94] T. Datastream, “1 january 2008 to 31 december 2008,”
    http://online.thomsonreuters.com/datastream/.
    [95] H. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, no. 1, pp. 77–91,
    March 1952.
    [96] D. Gautam, G. Dimitrios, K. Nick, and T. Dimitris, “Answering top-k queries
    using views,” in VLDB ’06: Proceedings of the 32nd international conference on
    Very large data bases, pp. 451–462, September 2006.
    [97] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in Proceedings of the
    32st International Conference on Very Large Data Bases (VLDB), pp. 751–762,
    September 2006.
    [98] I.-F. Su, Y.-C. Chung, and C. Lee, “Top-k combinatorial skyline queries,” in Proceedings
    of the 15th International Conference on Database Systems for Advanced
    Applications (DASFAA 2010), April 2010.
    [99] M. Michael, P. J. M., and J. H. V., “Efficient skyline computation over lowcardinality
    domains,” in Proceedings of the 33rd international conference on Very
    large data bases, pp. 267–278, September 2007.
    [100] I. Anderson, A First Course in Discrete Mathematics. Springer, 2000.
    [101] R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction
    (4th Edition). Addison-Wesley, 1998.

    無法下載圖示 校內:2015-07-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE