簡易檢索 / 詳目顯示

研究生: 吳侑蓁
Wu, You-Zhen
論文名稱: 丙酮肟及氮-甲基乙醯胺在二氧化鈦粉末表面上的吸附與反應
Adsorption and Reactions of Acetone Oxime and N-methylacetamide on Powdered TiO2
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: 二氧化鈦丙酮肟(Acetone Oxime)氮-甲基乙醯胺(N-methylacetamide)傅立葉轉換紅外光譜儀(FT-IR)
外文關鍵詞: TiO2, Acetone Oxime, N-methylacetamide, FTIR
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用傅立葉轉換紅外光譜(FT-IR)分析丙酮肟(Acetone oxime)與氮-甲基乙醯胺(N-methylacetamide)於TiO2表面的吸附結構,並進行熱與光反應的研究,藉以了解丙酮肟、氮-甲基乙醯胺與TiO¬2表面的作用及光與熱的反應機制。
    丙酮肟吸附於二氧化鈦表面(~ 35 oC)時,會與表面OH基發生反應形成-OC(CH3)2NH-中間物,含C-NH…Ti與C-O…Ti的作用方式。在密閉系統中進行加熱會先生成η1(O)-CH3COO、OC(CH3)2NH2以及含有C=O或C=N的物種,隨著溫度持續上升,C-N斷鍵形成丙酮及NH3,更高溫度會產生CO2、CH3COO、NO、CH3CONH、含C≡N的物種。丙酮肟/TiO2於O2存在下的熱反應也有形成類似無O2的產物,但在高溫時可生成其他產物或中間物,如:NCO、N2O、CO3、NO3及NO2。丙酮肟/TiO2於有O2存在下,受325 nm光照射會分解而生成丙酮,隨著照光時間增加,逐漸產生NCO、H2O、CH3COO、NO2、NO3、HCOO及N2O。
    氮-甲基乙醯胺吸附於TiO2表面後會斷N-H鍵,形成η2(N,O)-CH3CONCH3,以N及O與表面形成具共振的吸附結構。在密閉環境中進行加熱反應會生成CH3COO及少量含C≡N的物種。在有氧環境中進行照光,氮-甲基乙醯胺會分解,光反應的主要產物或中間物為CO2、NCO、CH3COO 與含C=O或C=N的物種。本研究指出丙酮肟於TiO¬2表面上無法進行Beckmann Rearrangement 而生成氮-甲基乙醯胺。

    Fourier-transform infrared spectroscopy has been employed to study the thermal and photochemical reactions of acetone oxime and N-methylacetamide on powdered TiO2. Acetone oxime reacts with the surface hydroxyl groups on TiO2 forming the intermediate of -OC(CH3)2NH-with C-NH…Ti and/or C-O…Ti interactions at 35 oC. Thermal reaction of acetone oxime/TiO2 forms η1(O)-CH3COO, NH2-containing intermediates, acetone, NH3, NO, CO2, CH3COO, CH3CONH and CN-containing species. In the presence of O2, other reaction prouducts of NO2, NO3, N2O, NCO and CO3 are also generated. In the photoreaction of acetone oxime /TiO2 in O2, acetone, H2O, NO2, NO3, N2O, NCO, HCOO and/or CH3COO are produced. N-methylacetamide on TiO2 can decompose to form η2(N,O)-CH3CONCH3 and CH3COO at 100 oC. In the photochemical reaction of N-methylacetamide on TiO2 with O2, NCO, CO2 and C=O and/or C=N-containing species are formed. We find that acetone oxime on TiO2 cannot undergo Beckmann Rearrangement to form N-methylacetamide in this research.

    第一章 緒論 1 1-1表面科學 1 1-1-1表面的定義 1 1-1-2表面吸附 2 1-1-3表面催化 2 1-2二氧化鈦 3 1-2-1二氧化鈦晶體結構 3 1-2-2二氧化鈦表面 4 1-3二氧化鈦光催化 5 1-3-1起源 5 1-3-2二氧化鈦光催化 5 1-3-3二氧化鈦光催化應用與檢測 6 1-4研究動機 7 第二章 實驗系統與方法 11 2-1實驗系統概述 11 圖2-1實驗系統架構示意圖 11 2-1-1儀器 12 2-1-2藥品 13 2-2傅氏轉換紅外線光譜系統 14 2-2-1紅外光源 14 2-2-2偵測器 14 2-3紫外光源 15 2-4真空系統 15 2-4-1壓力測量 15 2-4-2紅外光譜反應槽設計 16 2-5二氧化鈦/鎢網(TiO2/W)的製備 18 2-5-1 TiO2/W的製備 18 2-5-2 TiO2/W在紅外光譜反應槽的擺放位向 18 2-5-3 TiO2/W的前處理 19 2-6藥品的前處理 19 2-7理論計算模型 19 第三章 結果與討論 21 3-1丙酮肟在二氧化鈦粉末表面上的吸附與反應 21 3-1-1丙酮肟在二氧化鈦粉末表面上的吸附及真空環境下的熱反應 21 3-1-2密閉環境下丙酮肟在二氧化鈦粉末表面上的熱反應 27 3-1-3密閉有氧環境下丙酮肟在二氧化鈦粉末表面上的熱反應 28 3-1-4密閉系統中丙酮肟在二氧化鈦粉末表面上的光反應及熱對照 29 3-1-5有氧(16O2/18O2)環境下丙酮肟在二氧化鈦粉末表面上的光反應與熱對照 30 3-1-6水對丙酮肟/二氧化鈦的影響 31 3-2氮-甲基乙醯胺在二氧化鈦粉末表面上的吸附 32 3-2-1氮-甲基乙醯胺在二氧化鈦粉末表面上的吸附 32 3-2-2密閉環境下氮-甲基乙醯胺在二氧化鈦粉末表面上的熱反應 34 3-2-3有氧(16O2)環境下氮-甲基乙醯胺在二氧化鈦粉末表面上的光反應及熱對照 35 第四章 結論 78 第五章 參考資料 81 附錄 86

    [1] Mertens, J., Oil on Troubled Waters: Benjamin Franklin and The Honor of Dutch Seamen. Physics. today 2006, 59, 36-41.
    [2] Zecchina, A.; Califano, S., The Development of Catalysis: A History of Key Processes and Personas in Catalytic Science and Technology. John Wiley & Sons: 2017.
    [3] Myers, R. L., The 100 Most Important Chemical Compounds: A Reference Guide. ABC-CLIO: 2007.
    [4] Davis, M. E.; Davis, R. J., Fundamentals of Chemical Reaction Engineering. Courier Corporation: 2012.
    [5] Appl, M., Ammonia, 2. Production Processes. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    [6] Smil, V., Enriching the Earth: Fritz Haber, Carl Bosch, and The Transformation of World Food Production. MIT Press: 2004.
    [7] Langmuir, I., Surface Chemistry. Chemical Reviews 1933, 13, 147-191.
    [8] Ertl, G., Reactions at Surfaces: From Atoms to Complexity (Nobel lecture). Angewandte Chemie International Edition 2008, 47 , 3524-3535.
    [9] Vickerman, J. C.; Gilmore, I. S., Surface Analysis: The Principal Techniques, 2 nd Edition. John Wiley & Sons: 2011.
    [10] Piumetti, M., A Brief History of The Science of Catalysis-I. Chimica Oggi-Chemistry Today 2014, 32, 6.
    [11] Mo, S.-D.; Ching, W., Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, Anatase, and Brookite. Physical Review B 1995, 51, 13023.
    [12] Augustynski, J., The Role of The Surface Intermediates in The Photoelectrochemical Behaviour of Anatase and Rutile TiO2. Electrochimica. Acta. 1993, 38, 43-46.
    [13] Landmann, M.; Rauls, E.; Schmidt, W., The Electronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2. Journal of Physics: Condensed Matter 2012, 24, 195503.
    [14] Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P., Band Alignment of Rutile and Anatase TiO2. Nature Materials 2013, 12, 798.
    [15] Zhang, J.; Zhou, P.; Liu, J.; Yu, J., New Understanding of The Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382-6.
    [16] Barnard, A.; Curtiss, L., Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano. Letters. 2005, 5, 1261-1266.
    [17] Wu, N.; Wang, J.; Tafen, D. N.; Wang, H.; Zheng, J.-G.; Lewis, J. P.; Liu, X.; Leonard, S. S.; Manivannan, A., Shape-enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. Journal of the American Chemical Society 2010, 132, 6679-6685.
    [18] Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.; Catalette, H., Optimisation of Accurate Rutile TiO 2 (110),(100),(101) and (001) Surface Models from Periodic DFT Calculations. Theoretical Chemistry Accounts 2007, 117, 565-574.
    [19] Pichat, P.; Disdier, J.; Hoang-Van, C.; Mas, D.; Goutailler, G.; Gaysse, C., Purification/deodorization of Indoor Air and Gaseous Effluents by TiO2 Photocatalysis. Catalysis Today 2000, 63, 363-369.
    [20] Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.; Zhang, K.-Q., A Review of TiO2 Nanostructured Catalysts for Sustainable H2 Generation. International Journal of Hydrogen Energy 2017, 42, 8418-8449.
    [21] Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z., Titanium Dioxide: from Engineering to Applications. Catalysts 2019, 9, 191.
    [22] Linsebigler, A. L. L., G.;Yates, J. T. , Photocatalysis on Ti02 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758.
    [23] Hegedűs, P.; Szabó-Bárdos, E.; Horváth, O.; Horváth, K.; Hajós, P., TiO2-Mediated Photocatalytic Mineralization of A Non-ionic Detergent: Comparison and Combination with Other Advanced Oxidation Procedures. Materials 2015, 8, 231-250.
    [24] Shayegan, Z.; Lee, C.-S.; Haghighat, F., TiO2 Photocatalyst for Removal of Volatile Organic Compounds in Gas Phase – A Review. Chemical Engineering Journal 2018, 334, 2408-2439.
    [25] Ochiai, T.; Fujishima, A., Photoelectrochemical Properties of TiO2 Photocatalyst and Its Applications for Environmental Purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012, 13, 247-262.
    [26] Wipf, P.; Fletcher, J. M.; Scarone, L., Microwave Promoted Oxazole Synthesis: Cyclocondensation Cascade of Oximes and Acyl Chlorides. Tetrahedron Letters 2005, 46, 5463-5466.
    [27] Macchia, B.; Balsamo, A.; Lapucci, A.; Macchia, F.; Martinelli, A.; Nencetti, S.; Orlandini, E.; Baldacci, M.; Mengozzi, G., Molecular Design, Synthesis, and Antiinflammatory Activity of A Series of Beta-aminoxypropionic Acids. Journal of Medicinal Chemistry 1990, 33, 1423-1430.
    [28] Garnovskii, D. A.; Kukushkin, V. Y., Metal-mediated Reactions of Oximes. Russian Chemical Reviews 2006, 75, 111.
    [29] Nguyen, M. T.; Raspoet, G.; Vanquickenborne, L. G., Important Role of The Beckmann Rearrangement in The Gas Phase Chemistry of Protonated Formaldehyde Oximes and Their [CH 4 NO]+ Isomers. Journal of the Chemical Society, Perkin Transactions 2 1995, 1791-1795.
    [30] Wu, J.; Larsen, S. C., Solid-State Nuclear Magnetic Resonance Study of Acetone Oxime Adsorbed on CuZSM-5 and on HZSM-5. Journal of Catalysis 1999, 182, 244-256.
    [31] Jones, C. A.; Larsen, S. C., A 13C and 15N Solid State NMR Study of the Reactions of Acetone Oxime Adsorbed on FeZSM-5. Catalysis Letters 2002, 78, 243-249.
    [32] Sirijaraensre, J.; Limtrakul, J., Vapor-phase Beckmann Rearrangement of Oxime Molecules over H-Faujasite Zeolite. Chemphyschem 2006, 7, 2424-32.
    [33] Shinohara, Y.; Mae, S.; Shouro, D.; Nakajima, T., A Quantum Chemical Study of Vapor-phase Beckmann Rearrangement Mechanisms on Oxide Catalysts. Journal of Molecular Structure: THEOCHEM 2000, 497, 1-9.
    [34] Landis, P.; Venuto, P., Organic Reactions Catalyzed by Crystalline Aluminosilicates: IV. Beckmann Rearrangement of Ketoximes to Amides. Journal of Catalysis 1966, 6, 245-252.
    [35] Schweitzer-Stenner, R.; Sieler, G.; Mirkin, N. G.; Krimm, S., Intermolecular Coupling in Liquid and Crystalline States of Trans-N-methylacetamide Investigated by Polarized Raman and FT-IR Spectroscopies. The Journal of Physical Chemistry A 1998, 102, 118-127.
    [36] Liedberg, B.; Tornkvist, C.; Lundstrom, I. In An Infrared Study Of N-Methylacetamide On Solid Surfaces: A Model Molecule For The Peptide Group In Proteins, 7th Intl Conf on Fourier Transform Spectroscopy, International Society for Optics and Photonics: 1989; pp 141-142.
    [37] Schweitzer‐Stenner, R., Visible and UV‐resonance Raman Spectroscopy of Model Peptides. Journal of Raman Spectroscopy 2001, 32, 711-732.
    [38] Cuevas, G.; Renugopalakrishnan, V.; Madrid, G.; Hagler, A., Density Function Studies of Peptides Part I. Vibrational Frequencies including Isotopic Effects and NMR Chemical Shifts of N-methylacetamide, A Peptide Model, from Density Function and MP2 Calculations. Physical Chemistry Chemical Physics 2002, 4 , 1490-1499.
    [39] Fan, J.; Yates Jr, J. T., Infrared Study of The Oxidation of Hexafluoropropene on TiO2. The Journal of Physical Chemistry 1994, 98, 10621-10627.
    [40] Rusu, C.; Yates, J., Photochemistry of NO Chemisorbed on TiO2 (110) and TiO2 Powders. The Journal of Physical Chemistry B 2000, 104, 1729-1737.
    [41] AIST: Spectral Database for Organic Compounds, SDBS.
    https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=468
    [42] Flakus, H.T.; Hachuła, B.; Garbacz, A., H/D Isotopic and Temperature Effects in the Polarized IR Spectra of Hydrogen-Bond Cyclic Trimers in the Crystal Lattices of Acetone Oxime and 3, 5-Dimethylpyrazole. The Journal of Physical Chemistry A 2012, 116 , 11553-11567.
    [43] Barakat, C.; Gravejat, P.; Guaitella, O.; Thevenet, F.; Rousseau, A., Oxidation of Isopropanol and Acetone Adsorbed on TiO2 under Plasma Generated Ozone Flow: Gas Phase and Adsorbed Species Monitoring. Applied Catalysis B: Environmental 2014, 147, 302-313.
    [44] Coates, J., Interpretation of Infrared Spectra, A Practical Approach. John Wiley & Sons Ltd, Chichester: 2000, 10815-10837.
    [45] Mattsson, A.; Osterlund, L., Adsorption and Photoinduced Decomposition of Acetone and Acetic Acid on Anatase, Brookite, and Rutile TiO2 Nanoparticles. The Journal of Physical Chemistry C 2010, 114 , 14121-14132.
    [46] National Institute of Standards and Technology, NIST.
    https://webbook.nist.gov/cgi/cbook.cgi?ID=C127060&Mask=200#Mass-Spec
    [47] National Institute of Standards and Technology, NIST.
    https://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Mask=200#Mass-Spec
    [48] Yamazoe, S.; Okumura, T.; Hitomi, Y.; Shishido, T.; Tanaka, T., Mechanism of Photo-oxidation of NH3 over TiO2: Fourier Transform Infrared Study of The Intermediate Species. The Journal of Physical Chemistry C 2007, 111, 11077-11085.
    [49] Chuang, C.-C.; Shiu, J.-S.; Lin, J.-L., Interaction of Hydrazine and Ammonia with TiO2. Physical Chemistry Chemical Physics 2000, 2, 2629-2633.
    [50] Zhanga, H.; Zhoua, P.; Jia, H.; Maa, W.; Chena, C.; Zhaoa, J., Enhancement of Photocatalytic Decarboxylation on TiO2 by Water-induced Change in Adsorption-mode. Applied Catalysis B: Environmental 2018, 224,376-382.
    [51] Chuang, C.-C.; Wu, W.-C.; Lee, M.-X.; Lin, J.-L., Adsorption and Photochemistry of CH3CN and CH3CONH2 on Powdered TiO2. Physical Chemistry Chemical Physics 2000, 2, 3877-3882.
    [52] Liao, L.-F.; Lien, C.-F.; Lin, J.-L., FTIR Study of Adsorption and Photoreactions of Acetic Acid on TiO2. Physical Chemistry Chemical Physics 2001, 3, 3831-3837.
    [53] Liao, L.-F.; Lien, C.-F.; Shieh, D.-L.; Chen, M.-T.; Lin, J.-L., FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. The Journal of Physical Chemistry B 2002, 106 (43), 11240-11245.
    [54] Solymosi, F.; Bansagi, T., Infrared Spectroscopic Study of The Adsorption of Isocyanic Acid. Journal of Physical Chemistry 1979, 83, 552-553.
    [55] Amores, J.G.; Escribano, V.S.; Ramis, G.; Busca, G., An FT-IR Study of Ammonia Adsorption and Oxidation over Anatase-supported Metal Oxides. Applied Catalysis B: Environmental 1997, 13, 45-58.
    [56] Mikhaylov, R. V.; Lisachenko, A. A.; Shelimov, B. N.; Kazansky, V. B.; Martra, G.; Alberto, G.; Coluccia, S., FTIR and TPD Analysis of Surface Species on A TiO2 Photocatalyst Exposed to NO, CO, and NO−CO Mixtures: Effect of UV− Vis Light Irradiation. The Journal of Physical Chemistry C 2009, 113, 20381-20387.
    [57] El-Maazawi, M.; Finken, A. N.; Nair, A. B.; Grassian, V. H., Adsorption and Photocatalytic Oxidation of Acetone on TiO2: An in Situ Transmission FT-IR Study. Journal of Catalysis 2000, 191, 138-146.
    [58] Zhuang, J.; Rusu, C.; Yates, J., Adsorption and Photooxidation of CH3CN on TiO2. The Journal of Physical Chemistry B 1999, 103, 6957-6967.
    [59] Hadjiivanov, K.; Bushev, V.; Kantcheva, M.; Klissurski, D., Infrared Spectroscopy Study of The Species Arising during Nitrogen Dioxide Adsorption on Titania (Anatase). Langmuir 1994, 10, 464-471.
    [60] Rusu, C.; Yates, J., N2O Adsorption and Photochemistry on High Area TiO2 Powder. The Journal of Physical Chemistry B 2001, 105, 2596-2603.
    [61] Liao, L.-F.; Wu, W.-C.; Chen, C.-Y.; Lin, J.-L., Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 and Effect of Adsorbed Water on The Rates of Formate and Formic Acid Photooxidation. The Journal of Physical Chemistry B 2001, 105, 7678-7685.
    [62] Larrubia, M. A.; Ramis, G.; Busca, G., An FT-IR Study of The Adsorption and Oxidation of N-containing Compounds over Fe2O3-TiO2 SCR Catalysts. Applied Catalysis B: Environmental 2001, 30, 101-110.
    [63] Ramis, G.; Busca, G.; Lorenzelli, V.; Forzatti, P., Fourier Transform Infrared Study of The Adsorption and Coadsorption of Nitric Oxide, Nitrogen Dioxide and Ammonia on TiO2 Anatase. Applied Catalysis 1990, 64, 243-257.
    [64] Byrn, M.; Calvin, M., Oxygen-18 Exchange Reactions of Aldehydes and Ketones. Journal of the American Chemical Society 1966, 88, 1916-1922.
    [65] Higashimoto, S.; Hatada, Y.; Ishikawa, R.; Azuma, M.; Sakata, Y.; Kobayashi, H., Selective Photocatalytic Oxidation of Benzyl Amine by O2 into N-benzylidenebenzylamine on TiO2 Using Visible Light. Current Organic Chemistry 2013, 17, 2374-2381.
    [66] Liao, L.-F.; Wu, W.-C.; Chuang, C.-C.; Lin, J.-L., FTIR Study of Adsorption and Reactions of Methylamine on Powdered TiO2. The Journal of Physical Chemistry B 2001, 105, 5928-5934.
    [67] Herrebout, W.; Clou, K.; Desseyn, H., Vibrational Spectroscopy of N-methylacetamide Revisited. The Journal of Physical Chemistry A 2001, 105, 4865-4881.
    [68] Törnkvist, C.; Liedberg, B.; Lundström, I., Infrared Study of N-methylacetamide on Clean and Chemically Modified Surfaces. Langmuir 1991, 7, 479-485.

    下載圖示 校內:2025-07-22公開
    校外:2025-07-22公開
    QR CODE