| 研究生: |
吳伯陽 Wu, Po-Yang |
|---|---|
| 論文名稱: |
對稱/不對稱U型金超穎介面的光學模擬與奈米製作與光學量測 Optical Simulation, Nano Fabrication and Optical Characterization of Symmetry/Asymmetry U-shape Gold Metasurface |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 超穎物質 、嚴格耦合分析 、奈米壓/轉印 、斯托克參數 |
| 外文關鍵詞: | Nano Pattern Imprint/ Transfer, Lithography, Metamaterial, Simulation (RCWA) |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用光學模擬與奈米製作與光學量測進行金屬超穎介面的分析。首先利用嚴格耦合分析法來探討對稱/不對稱U型金超穎陣列的方位旋轉角以及橢偏率,由於經過不對稱結構後出射光的左/右圓偏振分量的相位與振幅不復相同,因此在紅外光波段有巨大光學訊號的產生。有了預期的光學模擬結果後,我們利用軟模具氣壓式輔助熱壓印搭配乾式蝕刻製作出工作矽模具後,將工作矽模具鍍金後利用奈米金轉印技術成功地在目標基板上製作出對稱/不對稱U型金超穎陣列,上述方法具有低成本、高產量、且大面積製作之優點,除此之外工作矽模具經由食人魚酸清洗後方可再次使用,因此具有重複使用的特性。最後利用吾人自行架設的光學量測系統進行對稱/不對稱U型金超穎陣列的量測分析,主要是先量測經過結構後出射光的斯托克參數,再經由公式換算後求得金超穎陣列的方位旋轉角以及橢偏率,最後我們將模擬與量測的結果作分析與討論。
經過不對稱U型金超穎陣列的光學量測後,其方位角旋轉在1310 nm時得到最大值25.9度而橢偏率在1330 nm時得到最大值0.87,而模擬與量測的結果近乎相同。
本論文在提出金超穎介面的光學模擬與奈米製作與光學分析後,我們可以藉由適當地調控結構參數,讓金屬超穎介面具有超薄旋轉片或超薄圓偏振片等特性。
In this master thesis, we exploit the Rigorous-Couple Wave Analysis (RCWA) to simulate the optical response of the symmetry/asymmetry U-shape gold metasurface; that is, the azimuth angle and ellipticity. Since the phase and amplitude of the asymmetry U-shape gold metasurface are not the same, there are enormous optical responses occurred in the near-infrared region. Following we have the expected simulation results, we make use of the air press-assisted thermal imprint with PFPE soft mold to define the U-shaped photoresist pattern on Si mold and use the dry-etching method to fabricate the working mold. Finally, we deposit Au on the working mold by E-gun evaporator and exploit the nano-transfer technique to transfer the Au from working mold to our target PC substrate. The working mold also can be used after the piranhna acid clean so it has reusable characterization. Last but not least, we use the optical characterization setup assembled on my own to measure the optical response of the symmetry/asymmetry U-shape gold metasurface. First we measure the stoke-parameters of the emergent light after incident the Au metasurface and by equation we acquire the azimuth angle and ellipticity of the gold structure. Finally, we compare the measurement result with the simulation one.
1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Physical Review Letters 84, 4184-4187 (2000).
2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
3. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures," Physical Review Letters 95, 227401 (2005).
4. T. B. Institute, "MOTH EYE ANTIREFLECTIVE COATINGS" (2008), retrieved http://www.asknature.org/product/a81b57057e84006083ad9062fa1ef921.
5. Wikipedia, "Nanomaterials" (2016), retrieved https://en.wikipedia.org/wiki/Nanomaterials.
6. Wikipedia, "Lycurgus Cup" (2015), retrieved https://en.wikipedia.org/wiki/Lycurgus_Cup.
7. D. T. Emerson, "The work of Jagadis Chandra Bose: 100 years of millimeter-wave research," IEEE Transactions on Microwave Theory and Techniques 45, 2267-2273 (1997).
8. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectronic Engineering 67–68, 56-62 (2003).
9. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, "Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies," ACS Photonics 2, 105-114 (2015).
10. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Physical Review Letters 85, 3966-3969 (2000).
11. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
12. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32, 53-55 (2007).
13. X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, "Metamaterials for THz polarimetric devices," Optics Express 17, 773-783 (2009).
14. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, "A perfect metamaterial polarization rotator," Applied Physics Letters 103, 171107 (2013).
15. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325, 1513-1515 (2009).
16. L. Kelvin, "Baltimore Lecture on Molecular Dynamics and Wave Theory of Light," (Cambridge University Press Warehouse, London, 1904), p. 619.
17. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Physical Review Letters 97, 177401 (2006).
18. C. A. Emeis, L. J. Oosterhoff, and G. de Vries, "Numerical Evaluation of Kramers-Kronig Relations," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 297, 54-65 (1967).
19. E. Plum, V. A. Fedotov, and N. I. Zheludev, "Optical activity in extrinsically chiral metamaterial," Applied Physics Letters 93, 191911 (2008).
20. W.-Y. Chen and C.-H. Lin, "A standing-wave interpretation of plasmon resonance excitation in split-ring resonators," Optics Express 18, 14280-14292 (2010).
21. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering 83, 1798-1804 (2006).
22. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," Journal of the Optical Society of America A: Optics, Image Science, and Vision 14, 2758-2767 (1997).
23. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Applied Physics Letters 94, 151112 (2009).
24. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: Theoretical study," Physical Review A 76, 023811 (2007).
25. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Physical Review B 80, 153104 (2009).
26. F. Alali, Y. H. Kim, A. Baev, and E. P. Furlani, "Plasmon-Enhanced Metasurfaces for Controlling Optical Polarization," ACS Photonics 1, 507-515 (2014).
27. Z. Weiren, D. R. Ivan, H. Yongjun, W. Guangjun, and P. Malin, "Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration," Journal of Optics 15, 125101 (2013).
28. G. Armelles, B. Caballero, P. Prieto, F. Garcia, A. Cebollada, M. U. Gonzalez, and A. Garcia-Martin, "Magnetic field modulation of chirooptical effects in magnetoplasmonic structures," Nanoscale 6, 3737-3741 (2014).
29. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, "Terahertz chiral metamaterials with giant and dynamically tunable optical activity," Physical Review B 86, 035448 (2012).
30. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four “U” split ring resonators," Applied Physics Letters 97, 081901 (2010).
31. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, "Giant Chiral Optical Response from a Twisted-Arc Metamaterial," Nano Letters 14, 1021-1025 (2014).
32. T.-T. Kim, S. S. Oh, H.-S. Park, R. Zhao, S.-H. Kim, W. Choi, B. Min, and O. Hess, "Optical Activity Enhanced by Strong Inter-molecular Coupling in Planar Chiral Metamaterials," Scientific Reports 4, 5864 (2014).
33. C. L. Haynes and R. P. Van Duyne, "Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics," The Journal of Physical Chemistry B 105, 5599-5611 (2001).
34. K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, "Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films," ACS Nano 6, 2931-2939 (2012).
35. Y. X. and and G. M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science 28, 153-184 (1998).
36. Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, "Interfacial Chemistries for Nanoscale Transfer Printing," Journal of the American Chemical Society 124, 7654-7655 (2002).
37. C.-C. Liang, M.-Y. Liao, W.-Y. Chen, T.-C. Cheng, W.-H. Chang, and C.-H. Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Optics Express 19, 4768-4776 (2011).
38. S. A. Kulinich and M. Farzaneh, "Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers," Surface Science 573, 379-390 (2004).
39. C.-C. Liang, C.-H. Lin, T.-C. Cheng, J. Shieh, and H.-H. Lin, "Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces," Advanced Materials Interfaces 2, 1500030 (2015).
40. T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, "Soft Lithography Using Acryloxy Perfluoropolyether Composite Stamps," Langmuir 23, 2898-2905 (2007).
41. S. S. Williams, S. Retterer, R. Lopez, R. Ruiz, E. T. Samulski, and J. M. DeSimone, "High-Resolution PFPE-based Molding Techniques for Nanofabrication of High-Pattern Density, Sub-20 nm Features: A Fundamental Materials Approach," Nano Letters 10, 1421-1428 (2010).
42. J. Wan, Z. Shu, S.-R. Deng, S.-Q. Xie, B.-R. Lu, R. Liu, Y. Chen, and X.-P. Qu, "Duplication of nanoimprint templates by a novel SU-8/SiO2/PMMA trilayer technique," Journal of Vacuum Science & Technology B 27, 19-22 (2009).
43. K. Jung, W. Song, H. W. Lim, and C. S. Lee, "Parameter study for silicon grass formation in Bosch process," Journal of Vacuum Science & Technology B 28, 143-148 (2010).
44. C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, "Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures," Journal of Micromechanics and Microengineering 15, 580 (2005).
45. C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, "Fabrication of nanopillars by nanosphere lithography," Nanotechnology 17, 1339 (2006).
46. J. M. Keith, N. Gregory, B. Shufeng, and Y. C. Stephen, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008).
47. S. Helmut, S. Sina, P. Sunggook, P. Celestino, P. Uwe, and G. Jens, "Controlled co-evaporation of silanes for nanoimprint stamps," Nanotechnology 16, S171 (2005).
48. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Letters 9, 178-182 (2009).
49. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nat Nano 6, 402-407 (2011).
50. C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C 4, 4491-4504 (2016).
51. "The Polarization Ellipse," in Polarized Light, Third Edition (CRC Press, 2010), pp. 50-51.
52. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, "Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances," Nat Commun 5(2014).
53. "The Polarization Ellipse," in Polarized Light, Third Edition (CRC Press, 2010), pp. 59-63.
54. "The Polarization Ellipse," in Polarized Light, Third Edition (CRC Press, 2010), pp. 283-291.
55. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, "Plasmonic Coupling in Gold Nanoring Dimers: Observation of Coupled Bonding Mode," Nano Letters 12, 1648-1654 (2012).
56. Thorlabs, "Fresnel Rhomb Retarders" (2014), retrieved https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=154.
57. Thorlabs, "Mounted Achromatic Wave Plates" (2015), retrieved https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=854.
58. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14, 8827-8836 (2006)