簡易檢索 / 詳目顯示

研究生: 張傑凱
Chang, Jei-Kai
論文名稱: 金屬轉印製程與微變形撓性模仁之應用
Application of Metal Contact Transfer Lithography and Deformable Flexible Mold
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 雷射輔助式金屬轉印技術接觸轉印與遮罩植入式微影技術抗反射次微米結構等位移光學元件。
外文關鍵詞: IR-LCP, CMEL, anti-reflection, sub-micrometer structures, isotropic deformation, optical devices.
相關次數: 點閱:86下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對奈米壓印以及轉印的領域進行兩個方向、三個分別的研究,首先是金屬轉印的部分,本研究主要根據之前先前所發展的雷射輔助式金屬轉印微影技術(Infrared Laser Assisted Direct Contact Printing Lithography, IR-LCP)成功的在玻璃基板上,定義出4吋面積、直徑1 um週期2um的六角最密堆積的金屬點陣列。在實驗製程上採用PDMS從矽母模上翻製出柱狀結構來做為轉印的母模,相對於傳統的硬質模仁可以大大減少昂貴的矽模仁的消耗和提升實驗的成功率,且此製程在金屬轉印來說具有快速、簡單、低成本、大面積等優勢。
    再來是用接觸轉印與遮罩植入式微影技術(Contact transferred and Mask Embedded Lithography)在大中心角、小曲率半徑的平凸透鏡上製作次微米級的抗反射結構來增加它的光學效益。實驗步驟同樣用軟性模仁來改善硬質基板的接觸問題以提升轉印的成功率,並利用轉印上去的金屬點作為蝕刻的硬遮罩來進行乾式蝕刻,最後成功的在曲面玻璃透鏡上製作出高深寬比的抗反射結構,經過光譜儀的量測結果,在近紅外光區最高可提升約2%的穿透率。
    最後是在奈米壓印中,常以PDMS從矽母模上翻製三維的結構,但是常遇到PDMS的軟性模仁因材料特性而收縮導致進行奈米壓印後的尺寸和預估的不合。以及不同應用領域中對於特殊尺寸的需求。以上問題必須從矽模仁進行修正,但是重作矽模仁成本昂貴且十分耗時,故在此提出依靠軟性模仁具高度收縮的特性再配合機構拉伸和模仁的幾何設計,使軟性模仁內的結構週期等擴張1-3%。本研究中基於平面應力的條件下推導出等軸拉伸的解析解,並配合COMSOL模擬印證出合適拉伸的幾何形狀,再依據此概念設計出一系列的拉伸機構,檢測上則依靠光學顯微鏡配合影像處理軟體找出區域內的軸向以及剪切應變,最後成功使軟性模仁內的結構周期在平均值的正負0.3 %的範圍內增長3.2 %。但外側區域最大的剪切應變佔平均應變的16 %,說明部分區域還是有剪切應變的存在。

    This paper investigates three separate issues in the area of nanoimprinting and contact transfer. The first part is laser-assisted direct metal transfer. It is mainly based on the Infrared Laser-Assisted Direct Contact Printing Lithography previously developed. This work successfully patterns a hexagonal metal films array with a pitch of 2 um and a diameter of 1 um on a 4-inch glass substrate. In the experiment, PDMS (Poly-dimethyl siloxane) is used to replicate arrayed columnar structures from a silicon mold. This micro/nano-patterning method has the advantages of fast, simple, low cost and large area in metal transfer.
    Secondly, the contact-transfer and mask embedded lithography (CMEL) is used to fabricate anti-reflective structures on a plane-convex lens to increase its optical transmission efficiency. It also uses a soft mold to improve the contact problem with a hard substrate to increase the transfer success rate and using the transferred metal films as a hard etching mask. We have successfully fabricated anti-reflection structures on the curved glass lens with high aspect ratio. Transmission rate can increase up to about 2% in the near-infrared region measured by the spectrometer.
    Finally, in nanoimprinting PDMS is often used to replicate nanostructures from a silicone mold. However, PDMS can shrink up to 2 % when demolded from the silicon mold. The conventional way to solve this problem is to re-manufacture a new silicon mold with a larger pitch, which is costly and time-consuming. Taking advantage of the high elastic property of PDMS mold, we propose a geometric design and stretching mechanism to create isotropic deformation allowing the structural pitch in the mold expanded by 1-3 %. In this study, the analytical solution of axisymmetric stretching is derived based on the condition of plane stress. A series of stretching mechanisms are designed to realize this concept. An optical microscope is used for the measurement. An image processing software is used to find the axial and shear strain in the region. From the measurement results, the average strain difference is within 0.3 % in 3.2 % expansion.

    目錄 摘要 I Abstract III 誌謝 XIII 圖目錄 XIX 表目錄 XXV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 金屬轉印製程 3 1.2.2 抗反射結構外型 6 1.3 論文架構 11 第二章 雷射輔助金屬轉印製程 12 2.1 雷射輔助式金屬轉印實驗原理 12 2.2 實驗設備及架構 14 2.2.1 Nd:YAG晶體脈衝雷射原理 14 2.2.2 Nd:YAG晶體雷射經擴散片後能量分佈量測 15 2.2.3轉印PDMS模仁製備 22 2.2.4雷射輔助式金屬轉印實驗架構 25 2.3雷射輔助式金屬轉印實驗結果與討論 29 2.3.1 不同蒸鍍設置結果的差別 29 2.3.2壓力變化 36 2.3.3能量變化 37 2.4 結果與討論 38 第三章 接觸式金屬轉印(CMEL)製作曲面蛾眼結構 40 3.1 介紹Introduction 40 3.2 壓印模仁製備 41 3.2.1矽母模準備 41 3.2.2 PDMS軟性模仁製備 41 3.3接觸轉印與遮罩植入式微影技術 45 3.3.1 壓印基板準備 45 3.3.2 雙層氣壓轉印系統 48 3.4 感應耦合式電漿蝕刻製程 51 3.4.1蝕刻機介紹 51 3.4.2電漿蝕刻製程 52 3.4.3曲面次微米結構量測 54 3.4.4結論 58 3.5 曲面玻璃穿透光譜量測 58 3.5.1 曲面玻璃穿透光譜量測結果 59 3.6 結果與討論 60 第四章 以機構設計達到撓性模仁做均勻性週期變化 64 4.1 介紹 64 4.2 等應變拉伸理論推導 65 4.2.1 平板等應變拉伸理論推導 65 4.2.2 圓盤等軸拉伸理論推導 67 4.3 可調式模仁模擬與設計 70 4.3.1 COMSOL介紹 70 4.3.2模型建立與邊界條件設定 72 4.4 光學顯微鏡配合Image J做影像處理軟體找微米結構之周期 75 4.4.1介紹 75 4.4.2 量測流程 76 4.5拉伸實驗系統設計以及結果 80 4.5.1拉伸模仁製備 80 4.5.2 雙軸拉伸系統 80 4.5.3撓性機構拉伸系統 84 4.5.4三爪自動歸心夾爪拉伸系統 86 4.5.5簡單套筒設計 89 4.5.6撓性機構推牆設計 94 4.6結果與討論 96 第五章 結論與未來展望 98 5.1 結論 98 5.2 未來展望 100 參考文獻 102

    參考文獻
    [1] R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proceedings of the IEEE, vol. 96, pp. 248-270, 2008.
    [2] S. Chattopadhyay, Y. F. Huang, Y. J. Jen, “Anti-reflecting and photonic nanostructure,” Materials Science and Engineering: R: Reports 69, pp. 1-35, 2010.
    [3] C. H. Chen and Y. C. Lee, “Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating,” Journal of Micromechanics and Microengineering, vol. 16, pp. 1252–1256, 2007.
    [4] C. H. Chen, Y. C. Lee and S.-J. Liaw, “Roller Imprinting Based on Focus Infrared Heating,” Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on. IEEE, pp. 877-880, 2008.
    [5] C. H. Chen, Y. C. Lee and F. B. Hsiao, “Infrared-assisted and roller-based direct metal contact transfer technology for flexible polarizer,” Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference on. IEEE, pp.937-940, 2010.

    [6] 陳俊祥,李永春,"滾輪式雷射金屬轉印技術與三維微奈米結構之直接壓印." 成功大學機械工程學系學位論文, 2007.
    [7] Y. C. Lee and C. Y. Chiu, “Micro-nano-lithography based on the contact ransfer of thin film and mask embedded etching,” Journal of Micromechanics and Microengineering, vol. 18, 075013, 2008.
    [8] 張丁仁,李永春, “金屬轉印技術與乾式蝕刻製程應用於次微米結構與抗反射光學元件之製作”, 國立成功大學機械工程學系碩士論文,2014.
    [9] C. Bernhard and W. H. Miller, “A corneal nipple patter in insect compound eyes,” Acta Physiologica Scandinavica, vol. 56, pp. 385-386, 1962.
    [10] W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” Journal of the Optical Society of America A, vol. 8, pp. 549-553, 1991.
    [11] G. S. Watson and J. A. Watson, “Natural nano-structures on insects-possible functions of ordered arrays characterized by atomic force microscopy,” Applied Surface Science, vol. 235, pp.139-144, 2004.

    [12] A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of hawkmoth, Cephonodes hylas,” Zoological Science, vol. 14, pp. 737-741, 1997.
    [13] P. Ruchhoeft, et al. “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography.” Journal of Vacuum Science & Technology B, vol.17, pp.2965-2969, 1999.
    [14] Y. P. Chen, Y. P. Lee, J. H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” Journal of Vacuum Science & Technology B, vol. 26, pp.1690-1695, 2008.
    [15] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounum S. Johnson, T. Bailet, etal., “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” Journal of Vacuum Science & Technology B, vol. 17, pp.2965-2969, 1999.

    [16] M. Beck, M. Graczyk, I. Maximov, E. Sarwe, T. Ling, M. Keil and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectronic Engineering, vol. 61, pp. 441-448, 2002.
    [17] M. G. Kang and L. J. Guo, “Metal transfer assisted nanolithography on rigid and flexible substrates,” Journal of Vacuum Science & Technology B, vol. 26, pp. 2421-2425, 2008.
    [18] B. Moazzez, S. M. O’Brien and E. F. Merschrod S. “Improved Adhesion of Gold Thin Films Evaporated on Polymer Resin: Applications for Sensing Surfaces and MEMS,” Sensors 2013, vol. 13, pp. 7021-7032, 2013.
    [19] A. P. Lewis, M. P. Down, C. Chianrabutra, L. Jiang and S. M. Spearing “The Effect on Switching Lifetime of Chromium Adhesion Layers in Gold-Coated Electrical Contacts under Cold and Hot Switching Conditions,” Holm Conference on Electrical Contacts (HOLM), 2013 IEEE 59th. IEEE, pp. 1-7, 2013.
    [20] T. Yanagishita, M. Masui, N. Ikegawa, and H. Masuda, “Fabrication of polymer antireflection structures by injection molding using ordered anodic porous alumina mold,” Journal of Vacuum Science & Technology B, vol. 32, 021809, 2014.
    [21] J. M. Stormonth-Darling, N. Gadegaard, “Injection Moulding Difficult Nanopatterns with Hybrid Polymer Inlays,” Macromolecular Materials and Engineering, vol. 11, pp. 1075–1080, 2012.

    下載圖示 校內:2023-08-27公開
    校外:2023-08-27公開
    QR CODE