簡易檢索 / 詳目顯示

研究生: 田宗謨
Tien, Tsung-mo
論文名稱: 潛堤附近碎波氣泡之實驗研究
Experimental Study of Air Bubbles Entrained by Breaking Waves near a Submerged Breakwater
指導教授: 許泰文
Hsu, Twi-wen
黃清哲
Huang, Ching-jer
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 130
中文關鍵詞: 光纖水中麥克風氣泡碎波潛堤
外文關鍵詞: fiber-optics, hydrophone, bubble, submerged breakwater, breaking wave
相關次數: 點閱:121下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨係以實驗方法探討規則波浪通過潛堤時,反射率、透射率的變化,並挑出八組發生碎波之造波條件,使用水中聲學儀器及光纖探針陣列,探討波浪通過潛堤發生碎波時,空氣捲入所產生之氣泡特性。氣泡特性一般常以氣泡大小、數量、分佈以及體積分率來表示。
    反射率與透射率的實驗量測,係利用分別置於潛堤前端以及潛堤末端的電容式波高計,量測不同造波條件下,波浪通過潛堤時之波高資料,並藉此計算反射率以及透射率結果。從實驗結果得知在潛堤高度與水深比大於0.6時,透射率容易受到波浪尖銳度、相對水深以及相對堤寬影響而有明顯衰減。由反、透射率的實驗觀察,挑出八組產生碎波之造波條件,探討碎波捲入產生之氣泡特性。在水中氣泡噪音實驗中,主要是利用水中麥克風量測碎波發生時,氣泡輻射出之聲音訊號,在濾除環境噪音後,利用Gabor 轉換,將時域訊號轉換為時間-頻率域訊號,並由此分析出氣泡之大小及數量,進一步得出碎波氣泡之機率密度譜。本文造波條件中所估算出之氣泡半徑分佈介於0.1 mm-7.6 mm之間,大約在氣泡半徑0.8 mm處,Hinze Scale將氣泡團區分成兩部分。光纖感測實驗則是利用陣列式光纖探針量測碎波帶內的光訊號,並求出訊號受氣泡影響之時間分率比 (time fraction ratio)。經由圓柱管氣泡率定實驗,可藉由時間分率比判識出氣泡體積分率,光纖探針感測實驗可以彌補以水中聲學方法在計算體積分率上的不足。比較波浪通過潛堤時,因為碎波所造成之能量損失以及碎波產生之氣泡數量後發現,碎波捲入產生之氣泡數量與所造成的能量損失之間存在一線性關係。

    In this study, wave gauges, the underwater acoustic instruments and an array of fiber optic sensor were used to explore the characteristics of the air bubbles entrained by breaking waves near a submerged breakwater. The characteristics of air bubbles are discussed in terms of bubble size, numbers, probability density and air void fraction.
    In the experiments of wave reflection and transmission, wave gauges were mounted 1 m away from the front and rear sides of the submerged breakwater, to measure the water surface elevation. The experimental data revealed that when the relative height of the breakwater is more than 0.6, an obvious decreasing trend is observed at the transmission coefficient. In order to excavate more about the characteristics of entrained bubbles, eight different wave conditions were selected and carried out in the acoustical and fiber optical experiments.
    The hydrophone was utilized to detect the noise radiated from the air bubbles. The time-series data of the underwater sound were transformed into the time-frequency domain for capturing the information of the bubbles, such as the bubble size and numbers. The probability density function of the bubbles was also determined. The results of this study reveal that the radius of the bubbles entrained by the breaking waves near a submerged breakwater ranges between 0.1 mm and 7.6 mm. The probability density function of the bubble shows a different slope with a Hinze scale of 0.8 mm. The number of air bubble increases along with the incident wave height and the width of submerged breakwater.
    Array of fiber optic probe is deployed in the surf zone to monitor the optic signals. The time fraction ratio of signals affected by air bubbles was then obtained. A calibration experiment was carried out in a cylindrical tank to establish the rating curve between the time fraction ratio and the void fraction. The rating curve enables the transfer of the time fraction ratio into the void fraction. In the void fraction measurement experiment, distributions of void fraction along the lee side of the breakwater are also presented in the text. There is a nice agreement after comparing the results of energy loss with entrained air bubbles.

    中文摘要…………I Abstract………II 誌謝…………….IV 目錄……….VI 表目錄…………IX 圖目錄…………..X 符號說明……..XV 第一章 緒論……………1 1-1 前言……… 1 1-2 文獻回顧…… 6 1-2.1 反、透射率相關……………………… 6 1-2.2 水中聲學相關……………… 8 1-2.3 光纖通訊相關…………………. 11 1-3 研究目標………13 1-4 本文組織………14 第二章 理論基礎……………15 2-1 反、透射率………15 2-1.1 反射率之計算………… 15 2-1.2 透射率之計算……………………16 2-2 Gabor轉換………………………. 17 2-3 光纖傳輸原理……………... 23 2-3.1 光纖傳輸幾何………23 2-3.2 光纖傳導模式…………24 2-3.3 Fresnel反射率公式……25 第三章 實驗佈置與量測方法……………… 28 3-1 實驗佈置…………………………... 28 3-1.1 造波設備及水位量測系統…28 3-1.2 氣泡聲訊量測系統…… 31 3-1.3 光纖感測系統……………………35 3-2 量測方法……………39 3-2.1 反射率與透射率之量測………………………………40 3-2.2 水中麥克風量測碎波捲入氣泡實驗………………………………44 3-2.3 光纖感測實驗……………………………………………………… 44 第四章 反射率、透射率試驗結果與討論………………………………………… 47 4-1 規則波浪通過潛堤之波形變化…………………………………………... 47 4-2 規則波浪通過潛堤之結果與討論………................................................... 52 4-2.1 波浪尖銳度 (incident wave steepness, )……………………52 4-2.2 相對水深 (relative depth of water, )……………………….. 55 4-2.3 相對堤寬 (relative crest width, )…………………………… 58 第五章 碎波氣泡試驗結果與討論………………………………………………… 62 5-1 背景噪音分析……………………………………………………………... 62 5-2 氣泡噪音分析……………………………………………………………... 64 5-3 氣泡數量與半徑之分析…………………………………………………... 82 5-4 碎波氣泡噪音實驗之結果………………………………………………... 85 第六章 光纖感測試驗結果與討論………………………………………………… 91 6-1 光纖探針率定實驗………………………………………………………... 91 6-1.1 光纖探針量測之訊號……………………………………………… 92 6-1.2 光纖探針訊號分析 …………………………..……………………..94 6-1.3 時間分率比計算…………………………………………………… 95 6-1.4 總體和局部體積分率之計算…………………………………….. ..97 6-1.5 率定實驗結果………………………………………………………99 6-2 光纖探針陣列量測碎波氣泡局部體積分率實驗…102 6-2.1 光纖陣列之訊號處理……103 6-2.2光纖探針陣列量測碎波氣泡體積分率之結果……..103 第七章 綜合討論……………………………107 第八章 結論與建議………………………………110 8-1 結論……………110 8-2 建議…………111 參考文獻………………112 附錄…………………120 自述……………………128

    1. Abdul Khader, M. H. and S. P. Rai, (1980) “A study of submerged breakwaters,” J. Hydraul. Res., Vol. 18, No. 2, pp. 113-121.
    2. Andreas, E. L. and E. C. Monahan, (2000) “The role of whitecap bubbles in air-sea heat and moisture exchange,” J. Phys. Oceanogr., Vol. 30, pp. 433-442.
    3. Banner, M. L. and E. H. Fooks, (1985) “On the microwave reflectivity of small scale breaking water waves,” Proc. R. Soc. Lond., A399, 93-109.
    4. Barrau, E., N. Rivière, C. Poupot, and A. Cartellier, (1999) “Single and double optical probes in air-water two-phase flows: real time signal processing and sensor performance,” Int. J. Multiphase Flow, Vol. 25, pp. 229-256.
    5. Blake, J. R. and D. C. Gibson, (1981) “Growth and collapse of a vapor cavity near a free surface,” J. Fluid Mech., Vol.111, pp. 123-144.
    6. Cartellier, A., (1990) “Optical probes for local void fraction measurements: Characterization of performance,” Rev. Sci. Instrum., Vol. 61, No. 2, pp. 874-886.
    7. Cartellier, A. (1992) “Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas-liquid two-phase flows,” Rev. Sci. Instrum., Vol. 63, No. 11, pp. 5442-5453.
    8. Carstensen, E. L., and L. L. Foldy, (1947) “Propagation of sound through a liquid containing bubbles,” J. Acoust. Soc. Am., Vol. 19, pp. 481-501.
    9. Chang, K. A., T. J. Hsu, and P. L. F. Liu, (2001) “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part I. Solitary waves,” Coastal Eng., Vol. 44, pp. 13-36.
    10. Chang, K. A., H. J. Lim, and C. B. Su, (2003) “Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows,” Rev. Sci. Instrum., Vol. 74, No. 7, pp. 3559-3565.
    11. Chang, K. A., T. J. Hsu, P. L. F. Liu, (2005) “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part II:Cnoidal waves,” Coastal Eng., Vol. 52, pp. 257-283.
    12. Commander, K. W. and A. Prosperetti, (1989) “Linear pressure waves in bubbly liquids:Comparison between theory and experiments,” J. Acoust. Soc. Am., Vol. 85, pp. 732-746.
    13. Dahl, P. H., (2001) “Bubble clouds and their transport within the surf zone as measured with a distributed array of upward-looking sonars,” J. Acoust. Soc. Am., 109(1) : 133-142.
    14. Dattatri, J., H. Raman, and N. J. Shanker, (1978) “Performance Characteristics of Submerged Breakwaters,” Proc. 16th Conf. on Coastal Eng., ASCE, Hamburg, pp. 2153-2171.
    15. de Leeuw, G. and G. J. Kunz, (1992) “NOVAM evaluation from aerosol and lidar measurements in a tropical marine environment,” Proc. SPIE Int. Soc. Opt. Eng., 1688, 14-28.
    16. Deane, G. B., (1997) “Sound generation and air entrainment by breaking waves in the surf zone,” J. Acoust. Soc. Am. 102(5) : 2671-2689.
    17. Deane, G. B., (1999) “Acoustic hot-spots and breaking wave noise in the surf zone,” J. Acoust. Soc. Am., 105(6) : 3151-3167.
    18. Deane, G. B. and M. D. Stokes, (2002) “Scale dependence of bubble creation mechanism in breaking waves,” Nature, Vol. 418, pp. 839-844.
    19. Dick, T. M. and A. Brebner, (1968) “Solid and Permeable Submerged Breakwaters,” Proc. 11th Conf. on Coastal Eng., ASCE, London, pp. 1141-1158.
    20. Driscoll, A. M., R. A. Dalrymple, and S. T. Grill, (1993) “Harmonic generation and transmission past a submerged rectangular obstacle,” Proc. 23rd Conf. on Coastal Eng., ASCE, New York, pp.1142-1152.
    21. EL-Kamash, M. R. Loewen, N. Rajaratnam, (2005) “Measurements of void fraction and bubble properties on a stepped chute using a fiber-optic probe,” Can. J. Civ. Eng., Vol. 32, pp. 636-643.
    22. Farmer, D. M., C. L. McNeil, and B. D. Johnson, (1993) “Evidence of the importance of bubbles in increasing air-sea gas flux,” Nature, Vol. 361, pp. 620-623.
    23. Foldy, L. L. (1945) “The multiple scattering of waves,” Physical Review, Vol. 67, pp. 107-119.
    24. Fox, F. E., S. R. Curely, and G. S. Larson, (1955) “Phase velocity and absorption measurements in water containing air bubbles,” J. Acoust. Soc. Am., Vol. 27, No. 3, pp. 534-539.
    25. Friedlander, B. and B. Porat, (1989) “Detection of transient signals by the Gabor representation,” IEEE Trans., Acoust. Speech Signal Process., Vol. 37, No. 2, pp. 169-180.
    26. Friedlander, B. and A. Zeira, (1995) “Over-sampled Gabor representation for transient signals,” IEEE Trans., Acoust. Speech Signal Process., Vol. 43, No. 9, pp. 2088-2094.
    27. Gabor, D. (1946) “Theory of communication,” J. Inst. Elec. Eng., Vol. 93, pp. 429-459.
    28. Goda, Y., (1967) “Travelling Secondary Wave Crests in Wave Channels,” Rep. of Port and Harbour Res. Inst., No. 13, pp. 32-38.
    29. Grue, J. (1992) “Nonlinear water waves at a submerged obstacle or bottom topography,” J. Fluid Mech., Vol. 244, pp. 455-476.
    30. Guo, J. J., L. Tsang, W. E. Asher, K. H. Ding and C. T. Chen, (2001) “Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean,” IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, pp.1019-1027.
    31. Hong, M., A. Cartellier, and E. J. Hopfinger, (2004) “Characterization of phase detection optical probes for the measurement of the dispersed phase parameters in sprays,” Int. J. Multiphase Flow, Vol. 30, pp. 615-648.
    32. Huang, C. J. and C. M. Dong, (1999) “Wave deformation and vortex generation in water waves propagating over a submerged dike,” Coastal Eng., Vol. 37, pp. 123-148.
    33. Huang, C. J. and C. M. Dong, (2001) “On the interaction of a solitary wave and a submerged dike,” Coastal Eng., Vol. 43, pp. 265-286.
    34. Hwang, P. A., Y. H. Hsu, and J. Wu, (1990) “Air bubbles produced by breaking wind waves,” J. Phys. Oceanogr., Vol. 20, pp. 19-28.
    35. Ishii, M., (1975) “Thermo- Fluid Dynamic Theory of Two-Phase Flow,” Eyrolles, Paris, France.
    36. Isobe, M., (1987) “A parabolic equation model for transformation of irregular waves due to refraction, diffraction and breaking,” Coastal Eng., In Japan, Vol. 30, No. 1, pp. 33-47.
    37. Izumiya, T., (1990) “Extension of mild slope equation for waves propagating over a permeable submerged breakwater,” Proc. 22nd Conf. on Coastal Eng., ASCE, pp. 306-315.
    38. Johnson, B. D. and R. C. Cooke, (1979) “Bubble populations and spectra in coastal waters: A photographic approach,” J. Geophys. Res., Vol. 84, pp. 3761-3766.
    39. Juliá, J. E., W. K. Harteveld, R. F. Mudde, and H. E. A. Van den Akker, (2005) “On the accuracy of the void fraction measurements using optical probes in bubbly flows,” Rev. Sci. Instrum., Vol. 76 , pp. 1- 13.
    40. Kiambi, S. L., A. M. Duquenne, A. Bascoul, and H. Delmas, (2001) “Measurements of local interfacial area:Application of bi-optical fibre technique,” Chem. Eng. Sci., Vol. 56, pp. 6447-6453.
    41. Kolaini, A. R., (1998) “Sound radiation by various types of laboratory breaking waves in fresh and salt water,” J. Acoust. Soc. Am., Vol. 103, No. 1, pp. 300-308.
    42. Kokhanovsky, A. A., (2004) “Spectral reflectance of whitecaps,” J. Geophys. Res., Vol. 109, C05021.
    43. Lammare, E. and W. K. Melville, (1991) “Air entrainment and dissipation in breaking waves,” Nature, Vol. 351, pp. 469-472.
    44. Leighton, T. G., K. J. Fagan, and J. E. Field, (1991) “Acoustic and photographic studies of injected bubbles,” Eur. J. Phys., Vol. 12, pp. 77-85.
    45. Leighton, T. G., White, P. R., and M. F. Schneider, (1998) “The detection and dimension of bubble entrainment and comminution,” J. Acoust. Soc. Am., Vol. 103, No. 4, pp. 1825-1835.
    46. Loewen, M. R. and W. K. Melville, (1991) “Microwave backscatter and acoustic radiation from breaking waves,” J. Fluid Mech., 224, 601-623
    47. Macpherson, J. D., (1957) “The effect of gas bubbles on sound propagation in water,” Proc. Phys. Soc. London, Sec. B, Vol. 70, pp. 85-92.
    48. Mansard, E. P. D. and E. R. Funke, (1980) “The Measurement of Incident and Reflected Spectra Using a Least Squares Method,” Proc. 17th Conf. on Coastal Eng., ASCE, pp. 154-172.
    49. Medwin, H. and N. D. Breitz, (1989) “Ambient and transient bubble spectral densities in quiescent seas and upper spilling breakers,” J. Geophys. Res., Vol. 94, No. C9, pp. 12,751-12,759.
    50. Medwin, H. and A. C. Daniel, (1990) “Acoustical measurements of bubble production by spilling breakers,” J. Acoust. Soc. Am., Vol. 88, pp. 408-412.
    51. Minnaert, M. (1933) “On musical air-bubbles and the sounds of running water,” Philos. Mag., Vol. 16, pp. 235-248.
    52. Morris, D., A. Teyssedou, J. Lapierre, and A. Tapucu, (1987) “Optical fiber probe to measure local void fraction profiles,” Appl. Opt., Vol. 26, No. 21, pp. 4660-4664.
    53. Ohyama, T. and K. Nadaoka, (1992) “Modeling the Transformation of Nonlinear Waves Passing over a Submerged Dike,” Proc. 23rd Conf. on Coastal Eng., ASCE, Venice, pp. 526-539.
    54. Panchang, V. G., G. Wei, B. R. Pearce, and M. J. Briggs, (1990) “Numerical simulation of irregular wave propagation over shoal,” J. Wtrwy., Port, Coast., and Oc. Engrg., Vol. 116, No. 3, pp. 324-340.
    55. Pumphrey, H. C. and L. A. Crum, (1989) “Underwater sound produced by individual drop impacts and rainfall,” J. Acoust. Soc. Am., Vol. 58, pp. 1518-1526.
    56. Rey, V., M. Belzons, and E. Guazzelli, (1992) “Propagation of surface gravity waves over a retangular submerged bar,” J. Fluid Mech., Vol. 235, pp. 453-479.
    57. Rinne, A., and R. Loth, (1996) “Development of local two-phase flow parameters for vertical bubbly flow in a pipe with sudden expansion,” Exp. Therm Fluid Sci., Vol. 13, pp. 152-166.
    58. Rojas, G., and M. R. Loewen, (2007) “Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves,” Exp. Fluids, Vol. 43, No. 6, pp. 895-906.
    59. Sabri, S., K. Shakourzadeh, D. Bastoul, and J. Militzer, (1995) “Bubble size and velocity measurement in gas-liquid systems:Application of fibre optic technique to pilot plant scale,” Can. J. Chem. Eng., Vol. 73, pp. 253-257, 1995.
    60. Serdula, C. D., M. R. Loewen, (1998) “Experiments investigating the use of fiber-optic probes for measuring bubble-size distributions,” IEEE J. Oceanic Eng., Vol. 23, No. 4, pp. 385-399.
    61. Silberman, E., (1957) “Sound velocity and attenuation in bubbly in water,” J. Fluid Mech., Vol.1, pp. 249-275.
    62. Stokes, M. D. and G. B. Deane, (1999) “A new optical instrument for the study of bubbles at high void fractions within breaking waves,” IEEE J. Oceanic Eng., 24(3) : 300-311.
    63. Su, M. Y., Todoroff, D., and J. Cartmill, (1994) “Laboratory comparisons of acoustic and optical sensors for microbubble measurement,” J. Atmos. Oceanic Technol., Vol.11, No. 1, pp. 170-181.
    64. Suh, K. D. and R. A. Dalrymple, (1993) “Application of angular spectrum model to simulation of irregular wave propagation,” J. Wtrwy., Port, Coast., and Oc. Engrg., Vol. 119, No. 5, pp. 505-520.
    65. Tien, Tsung-Mo (2002) “Sound propagation through a bubble screen at finite gas-volume fraction,” Master Thesis, National Cheng-Kung University, Tainan, Taiwan.
    66. Ting, F. C. K., Y. K. Kim, (1994) “Vortex generation in water waves propagating over a submerged obstacle,” Coastal Eng., Vol. 24, pp. 23-49.
    67. Thornton, E. B., and R. J. Calhoum, (1972) “Spectral resolution of breakwater reflected waves,” J. Wtrwy., Harb. and Coast. Engrg. Div., ASCE, Vol. 98, No. 4, pp. 443-460.
    68. Wu, J. (1994a) “Bubbles in the near-surface ocean: Their various structures,” J. Phys. Oceanogr., Vol. 24, pp. 1955- 1965.
    69. Wu, J. (1994b) “Films drops produced by air bubbles bursting at the surface of seawater,” J. Geophys. Res., Vol. 99, No. c8, pp. 16403-16407.
    70. Zheng, Q. A., V. Klemas, C. S. Hayne, and N. E. Huang, (1983) “The effect of oceanic whitecaps and foams on pulse-limited radar altimeters,” J. Geophys. Res., Vol. 88, pp. 2571-2578.
    71. 黃清哲、董志明、郭金棟, (1995) 「非線性波浪通過潛堤之變形」, 中華民國第十七屆海洋工程研討會,pp. 783-798.
    72. 黃榮鑑、蘇怡中,(1996) 「潛堤結構物受波浪作用之流場數值模擬」,第十八屆海洋工程研討會論文集,pp. 264-272.
    73. 郭一羽等,(2001) 「海岸工程學」,文山書局。
    74. 李揚漢等,(2007) 「光纖通信網路」,五南書局。

    下載圖示 校內:立即公開
    校外:2009-02-04公開
    QR CODE